Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1614.64 on revision:1614

* Page found: Zustandsvektoren im Hilbertraum (eq math.1614.64)

(force rerendering)

Occurrences on the following pages:

Hash: 6348fa49eaf03c5743d28fb8a7770d91

TeX (original user input):

\begin{align}
& \left\langle  \Phi  | \Psi  \right\rangle ={{\lambda }_{1}}\left\langle  \Phi  | {{\Psi }_{1}} \right\rangle +{{\lambda }_{2}}\left\langle  \Phi  | {{\Psi }_{2}} \right\rangle  \\
& \Rightarrow \left\langle  \Phi  | \Psi  \right\rangle *={{\lambda }_{1}}*\left\langle  \Phi  | {{\Psi }_{1}} \right\rangle *+{{\lambda }_{2}}*\left\langle  \Phi  | {{\Psi }_{2}} \right\rangle * \\
& \Rightarrow \left\langle  \Psi  | \Phi  \right\rangle ={{\lambda }_{1}}*\left\langle  {{\Psi }_{1}} | \Phi  \right\rangle +{{\lambda }_{2}}*\left\langle  {{\Psi }_{2}} | \Phi  \right\rangle  \\
& \Rightarrow \left\langle  \Psi  \right|={{\lambda }_{1}}*\left\langle  {{\Psi }_{1}} \right|+{{\lambda }_{2}}*\left\langle  {{\Psi }_{2}} \right| \\
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle \Phi |\Psi \right\rangle ={{\lambda }_{1}}\left\langle \Phi |{{\Psi }_{1}}\right\rangle +{{\lambda }_{2}}\left\langle \Phi |{{\Psi }_{2}}\right\rangle \\&\Rightarrow \left\langle \Phi |\Psi \right\rangle *={{\lambda }_{1}}*\left\langle \Phi |{{\Psi }_{1}}\right\rangle *+{{\lambda }_{2}}*\left\langle \Phi |{{\Psi }_{2}}\right\rangle *\\&\Rightarrow \left\langle \Psi |\Phi \right\rangle ={{\lambda }_{1}}*\left\langle {{\Psi }_{1}}|\Phi \right\rangle +{{\lambda }_{2}}*\left\langle {{\Psi }_{2}}|\Phi \right\rangle \\&\Rightarrow \left\langle \Psi \right|={{\lambda }_{1}}*\left\langle {{\Psi }_{1}}\right|+{{\lambda }_{2}}*\left\langle {{\Psi }_{2}}\right|\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.129 KB / 441 B) :

Φ|Ψ=λ1Φ|Ψ1+λ2Φ|Ψ2Φ|Ψ*=λ1*Φ|Ψ1*+λ2*Φ|Ψ2*Ψ|Φ=λ1*Ψ1|Φ+λ2*Ψ2|ΦΨ|=λ1*Ψ1|+λ2*Ψ2|
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>*</mo><mo>=</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>*</mo><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>*</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustandsvektoren im Hilbertraum page

Identifiers

  • Φ
  • Ψ
  • λ1
  • Φ
  • Ψ1
  • λ2
  • Φ
  • Ψ2
  • Φ
  • Ψ
  • λ1
  • Φ
  • Ψ1
  • λ2
  • Φ
  • Ψ2
  • Ψ
  • Φ
  • λ1
  • Ψ1
  • Φ
  • λ2
  • Ψ2
  • Φ
  • Ψ
  • λ1
  • Ψ1
  • λ2
  • Ψ2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results