Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1587.54 on revision:1587

* Page found: Schrödingergleichung mit äußeren Potenzialen (eq math.1587.54)

(force rerendering)

Occurrences on the following pages:

Hash: 49e5888fc0e0261756c719bb6bc46d90

TeX (original user input):

\left( \frac{\hbar }{i}\nabla -e\bar{A}\acute{\ } \right)\Psi \acute{\ }(\bar{r},t)={{e}^{i\frac{e}{\hbar }G(\bar{r},t)}}\left\{ \frac{\hbar }{i}\nabla -e(\bar{A}\acute{\ }-\nabla G(\bar{r},t)) \right\}\Psi (\bar{r},t)={{e}^{i\frac{e}{\hbar }G(\bar{r},t)}}\left\{ \frac{\hbar }{i}\nabla -e\bar{A} \right\}\Psi (\bar{r},t)

TeX (checked):

\left({\frac {\hbar }{i}}\nabla -e{\bar {A}}{\acute {\ }}\right)\Psi {\acute {\ }}({\bar {r}},t)={{e}^{i{\frac {e}{\hbar }}G({\bar {r}},t)}}\left\{{\frac {\hbar }{i}}\nabla -e({\bar {A}}{\acute {\ }}-\nabla G({\bar {r}},t))\right\}\Psi ({\bar {r}},t)={{e}^{i{\frac {e}{\hbar }}G({\bar {r}},t)}}\left\{{\frac {\hbar }{i}}\nabla -e{\bar {A}}\right\}\Psi ({\bar {r}},t)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.86 KB / 454 B) :

(ieA¯´)Ψ´(r¯,t)=eieG(r¯,t){ie(A¯´G(r¯,t))}Ψ(r¯,t)=eieG(r¯,t){ieA¯}Ψ(r¯,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mi mathvariant="normal">&#x2207;</mi><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mi mathvariant="normal">&#x2207;</mi><mo>&#x2212;</mo><mi>e</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x2207;</mi><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mi mathvariant="normal">&#x2207;</mi><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Schrödingergleichung mit äußeren Potenzialen page

Identifiers

  • i
  • e
  • A¯
  • ´
  • Ψ
  • ´
  • r¯
  • t
  • e
  • i
  • e
  • G
  • r¯
  • t
  • i
  • e
  • A¯
  • ´
  • G
  • r¯
  • t
  • Ψ
  • r¯
  • t
  • e
  • i
  • e
  • G
  • r¯
  • t
  • i
  • e
  • A¯
  • Ψ
  • r¯
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results