Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1495.19 on revision:1495

* Page found: D'Alembertsches Prinzip der virtuellen Arbeit (eq math.1495.19)

(force rerendering)

Occurrences on the following pages:

Hash: f7b1e68037752bc27d7bd2e872d00161

TeX (original user input):

\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}}{{\delta }_{{}}}{{({{\vec{r}}_{i}}-{{\vec{r}}_{j}})}_{{}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}}{{\delta }_{{}}}{{r}_{ij}}=0

TeX (checked):

\sum \limits _{i}{{{\vec {Z}}_{i}}{{\delta }_{}}{{\vec {r}}_{i}}}=\sum \limits _{i,j}{{{\lambda }_{ij}}{\frac {{{\vec {r}}_{i}}-{{\vec {r}}_{j}}}{{r}_{ij}}}{{\delta }_{}}{{\vec {r}}_{i}}}={\frac {1}{2}}\sum \limits _{i,j}{{{\lambda }_{ij}}{\frac {{{\vec {r}}_{i}}-{{\vec {r}}_{j}}}{{r}_{ij}}}}{{\delta }_{}}{{({{\vec {r}}_{i}}-{{\vec {r}}_{j}})}_{}}={\frac {1}{2}}\sum \limits _{i,j}{{\lambda }_{ij}}{{\delta }_{}}{{r}_{ij}}=0

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.179 KB / 423 B) :

iZiδri=i,jλijrirjrijδri=12i,jλijrirjrijδ(rirj)=12i,jλijδrij=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Z</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub></mrow></mfrac></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub></mrow></mfrac></mrow></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi></mrow></mrow></munder><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mo>=</mo><mn>0</mn></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire D'Alembertsches Prinzip der virtuellen Arbeit page

Identifiers

  • i
  • Zi
  • δ
  • ri
  • i
  • j
  • λij
  • ri
  • rj
  • rij
  • δ
  • ri
  • i
  • j
  • λij
  • ri
  • rj
  • rij
  • δ
  • ri
  • rj
  • i
  • j
  • λij
  • δ
  • rij

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results