Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1495.1 on revision:1495

* Page found: D'Alembertsches Prinzip der virtuellen Arbeit (eq math.1495.1)

(force rerendering)

Occurrences on the following pages:

Hash: 8649c9b8378e43055a4131a049f90be2

TeX (original user input):

\begin{align}
  & {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}(t)-{{{\vec{X}}}_{i}}={{{\vec{Z}}}_{i}}\quad i=1...N \\
 & \to \sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}(t)-{{{\vec{X}}}_{i}} \right)\delta {{{\vec{r}}}_{i}}=}\sum\limits_{i}{{{{\vec{Z}}}_{i}}\delta {{{\vec{r}}}_{i}}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{m}_{i}}{{\ddot {\vec {r}}}_{i}}(t)-{{\vec {X}}_{i}}={{\vec {Z}}_{i}}\quad i=1...N\\&\to \sum \limits _{i}{\left({{m}_{i}}{{\ddot {\vec {r}}}_{i}}(t)-{{\vec {X}}_{i}}\right)\delta {{\vec {r}}_{i}}=}\sum \limits _{i}{{{\vec {Z}}_{i}}\delta {{\vec {r}}_{i}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.878 KB / 502 B) :

mir¨i(t)Xi=Zii=1...Ni(mir¨i(t)Xi)δri=iZiδri
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Z</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mspace width="1em"></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>.</mo><mo>.</mo><mo>.</mo><mi>N</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo accent="false">&#x2192;</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Z</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire D'Alembertsches Prinzip der virtuellen Arbeit page

Identifiers

  • mi
  • r¨i
  • t
  • Xi
  • Zi
  • i
  • N
  • i
  • mi
  • r¨i
  • t
  • Xi
  • δ
  • ri
  • i
  • Zi
  • δ
  • ri

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results