Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1446.123 on revision:1446

* Page found: Relativistische Formulierung der Elektrodynamik (eq math.1446.123)

(force rerendering)

Occurrences on the following pages:

Hash: d217c537cb32f92b357196ac4c2cb069

TeX (original user input):

\begin{align}
& \frac{d}{ds}\frac{E}{c}=\frac{\gamma }{{{c}^{2}}}\frac{dE}{dt}=\frac{q}{c}\left( {{F}^{01}}{{u}_{1}}+{{F}^{02}}{{u}_{2}}+{{F}^{03}}{{u}_{3}} \right)= \\
& =\frac{q\gamma }{{{c}^{2}}}\left( -{{E}^{1}}{{v}_{1}}-{{E}^{2}}{{v}_{2}}-{{E}^{3}}{{v}_{3}} \right)=\frac{q\gamma }{{{c}^{2}}}\left( {{E}^{1}}{{v}^{1}}+{{E}^{2}}{{v}^{2}}+{{E}^{3}}{{v}^{3}} \right) \\
& \frac{dE}{dt}=q\bar{E}\cdot \bar{v} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {d}{ds}}{\frac {E}{c}}={\frac {\gamma }{{c}^{2}}}{\frac {dE}{dt}}={\frac {q}{c}}\left({{F}^{01}}{{u}_{1}}+{{F}^{02}}{{u}_{2}}+{{F}^{03}}{{u}_{3}}\right)=\\&={\frac {q\gamma }{{c}^{2}}}\left(-{{E}^{1}}{{v}_{1}}-{{E}^{2}}{{v}_{2}}-{{E}^{3}}{{v}_{3}}\right)={\frac {q\gamma }{{c}^{2}}}\left({{E}^{1}}{{v}^{1}}+{{E}^{2}}{{v}^{2}}+{{E}^{3}}{{v}^{3}}\right)\\&{\frac {dE}{dt}}=q{\bar {E}}\cdot {\bar {v}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.248 KB / 542 B) :

ddsEc=γc2dEdt=qc(F01u1+F02u2+F03u3)==qγc2(E1v1E2v2E3v3)=qγc2(E1v1+E2v2+E3v3)dEdt=qE¯v¯
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>E</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>q</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mn>1</mn></mrow></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mn>2</mn></mrow></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>+</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>0</mn><mn>3</mn></mrow></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>q</mi><mi>&#x03B3;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>&#x2212;</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>q</mi><mi>&#x03B3;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>+</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>E</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mi>q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Relativistische Formulierung der Elektrodynamik page

Identifiers

  • d
  • d
  • s
  • E
  • c
  • γ
  • c
  • d
  • E
  • d
  • t
  • q
  • c
  • F
  • u1
  • F
  • u2
  • F
  • u3
  • q
  • γ
  • c
  • E
  • v1
  • E
  • v2
  • E
  • v3
  • q
  • γ
  • c
  • E
  • v
  • E
  • v
  • E
  • v
  • d
  • E
  • d
  • t
  • q
  • E¯
  • v¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results