Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1446.118 on revision:1446

* Page found: Relativistische Formulierung der Elektrodynamik (eq math.1446.118)

(force rerendering)

Occurrences on the following pages:

Hash: 673a83adeeb6650fb29e89055701d3f7

TeX (original user input):

\begin{align}
& \frac{d}{dt}{{p}^{1}}=q\left( {{E}^{1}}+{{v}^{2}}{{B}^{3}}-{{v}^{3}}{{B}^{2}} \right) \\
& =q\left( {{F}^{10}}+{{F}^{21}}\frac{1}{c}{{v}^{2}}-{{F}^{13}}\frac{1}{c}{{v}^{3}} \right) \\
& =\frac{q}{\gamma }\left( {{F}^{10}}\gamma +{{F}^{21}}\frac{\gamma }{c}{{v}^{2}}-{{F}^{13}}\frac{\gamma }{c}{{v}^{3}} \right)=\frac{q}{\gamma }{{F}^{1\mu }}{{u}_{\mu }} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {d}{dt}}{{p}^{1}}=q\left({{E}^{1}}+{{v}^{2}}{{B}^{3}}-{{v}^{3}}{{B}^{2}}\right)\\&=q\left({{F}^{10}}+{{F}^{21}}{\frac {1}{c}}{{v}^{2}}-{{F}^{13}}{\frac {1}{c}}{{v}^{3}}\right)\\&={\frac {q}{\gamma }}\left({{F}^{10}}\gamma +{{F}^{21}}{\frac {\gamma }{c}}{{v}^{2}}-{{F}^{13}}{\frac {\gamma }{c}}{{v}^{3}}\right)={\frac {q}{\gamma }}{{F}^{1\mu }}{{u}_{\mu }}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.624 KB / 477 B) :

ddtp1=q(E1+v2B3v3B2)=q(F10+F211cv2F131cv3)=qγ(F10γ+F21γcv2F13γcv3)=qγF1μuμ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>=</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo>+</mo><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>B</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mo>+</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>q</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>0</mn></mrow></mrow></msup><mi>&#x03B3;</mi><mo>+</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>q</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow></mfrac></mrow><msup><mi>F</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mi>&#x03BC;</mi></mrow></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Relativistische Formulierung der Elektrodynamik page

Identifiers

  • d
  • d
  • t
  • p
  • q
  • E
  • v
  • B
  • v
  • B
  • q
  • F
  • F
  • c
  • v
  • F
  • c
  • v
  • q
  • γ
  • F
  • γ
  • F
  • γ
  • c
  • v
  • F
  • γ
  • c
  • v
  • q
  • γ
  • F
  • μ
  • uμ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results