Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1443.222 on revision:1443
* Page found: Materie in elektrischen und magnetischen Feldern (eq math.1443.222)
(force rerendering)Occurrences on the following pages:
Hash: d76f9d801df2f4d3a74919d7f850139a
TeX (original user input):
\begin{align}
& {{k}^{2}}=\frac{{{\omega }^{2}}}{{{c}^{2}}}\left( {{n}^{2}}-{{\gamma }^{2}}+2in\gamma \right)\approx \frac{{{\omega }^{2}}}{{{c}^{2}}}\varepsilon \mu \frac{i}{\omega \tau } \\
& \Rightarrow {{n}^{2}}-{{\gamma }^{2}}\approx 0 \\
& n\gamma \approx {{n}^{2}}\approx {{\gamma }^{2}}\approx \frac{\varepsilon \mu }{2\omega \tau }\Rightarrow n=\gamma =\sqrt{\frac{\varepsilon \mu }{2\omega \tau }} \\
& \tan \phi =\frac{\gamma }{n}\approx 1\Rightarrow \phi \approx \frac{\pi }{4} \\
\end{align}
TeX (checked):
{\begin{aligned}&{{k}^{2}}={\frac {{\omega }^{2}}{{c}^{2}}}\left({{n}^{2}}-{{\gamma }^{2}}+2in\gamma \right)\approx {\frac {{\omega }^{2}}{{c}^{2}}}\varepsilon \mu {\frac {i}{\omega \tau }}\\&\Rightarrow {{n}^{2}}-{{\gamma }^{2}}\approx 0\\&n\gamma \approx {{n}^{2}}\approx {{\gamma }^{2}}\approx {\frac {\varepsilon \mu }{2\omega \tau }}\Rightarrow n=\gamma ={\sqrt {\frac {\varepsilon \mu }{2\omega \tau }}}\\&\tan \phi ={\frac {\gamma }{n}}\approx 1\Rightarrow \phi \approx {\frac {\pi }{4}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.238 KB / 528 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>i</mi><mi>n</mi><mi>γ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mi>ε</mi><mi>μ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ω</mi><mi>τ</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>≈</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>n</mi><mi>γ</mi><mo>≈</mo><msup><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>≈</mo><msup><mi>γ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ε</mi><mi>μ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>ω</mi><mi>τ</mi></mrow></mrow></mfrac></mrow><mo>⇒</mo><mi>n</mi><mo>=</mo><mi>γ</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>ε</mi><mi>μ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>ω</mi><mi>τ</mi></mrow></mrow></mfrac></mrow></msqrt></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>tan</mi><mo>⁡</mo><mi>ϕ</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>γ</mi></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></mfrac></mrow><mo>≈</mo><mn>1</mn><mo>⇒</mo><mi>ϕ</mi><mo>≈</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>π</mi></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Materie in elektrischen und magnetischen Feldern page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results