Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1443.198 on revision:1443

* Page found: Materie in elektrischen und magnetischen Feldern (eq math.1443.198)

(force rerendering)

Occurrences on the following pages:

Hash: a19ee01f82565580520500a24ebf2fce

TeX (original user input):

\begin{align}
& \rho =0 \\
& \nabla \times \bar{E}+\dot{\bar{B}}=0 \\
& \nabla \times \bar{B}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\dot{\bar{E}}={{\mu }_{0}}\mu \bar{j}={{\mu }_{0}}\mu \sigma \bar{E} \\
& \nabla \cdot \bar{E}=0 \\
& \nabla \cdot \bar{B}=0 \\
& \Rightarrow \nabla \times \left( \nabla \times \bar{E} \right)=\nabla \left( \nabla \cdot \bar{E} \right)-\Delta \bar{E}=-\Delta \bar{E}=-\nabla \times \dot{\bar{B}}=-{{\mu }_{0}}\mu \sigma \dot{\bar{E}}-{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\ddot{\bar{E}} \\
&  \\
& \Delta \bar{E}={{\mu }_{0}}\mu \sigma \dot{\bar{E}}+{{\mu }_{0}}\mu \varepsilon {{\varepsilon }_{0}}\ddot{\bar{E}} \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.349 KB / 535 B) :

ρ=0×E¯+B¯˙=0×B¯μ0μεε0E¯˙=μ0μj¯=μ0μσE¯E¯=0B¯=0×(×E¯)=(E¯)ΔE¯=ΔE¯=×B¯˙=μ0μσE¯˙μ0μεε0E¯¨ΔE¯=μ0μσE¯˙+μ0μεε0E¯¨
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03C1;</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03B5;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x2207;</mi><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03B5;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>+</mo><msub><mi>&#x03BC;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>&#x03BC;</mi><mi>&#x03B5;</mi><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Materie in elektrischen und magnetischen Feldern page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results