Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1443.194 on revision:1443

* Page found: Materie in elektrischen und magnetischen Feldern (eq math.1443.194)

(force rerendering)

Occurrences on the following pages:

Hash: 47a7c13985c64ad02e9143fdc673efc5

TeX (original user input):

\begin{align}
& \bar{P}={{\varepsilon }_{0}}n\alpha {{{\bar{E}}}_{a}}={{\varepsilon }_{0}}n\alpha \left( \bar{E}+\frac{1}{3{{\varepsilon }_{0}}}\bar{P} \right) \\
& \bar{P}={{\varepsilon }_{0}}{{\chi }_{e}}\bar{E} \\
& \Rightarrow {{\chi }_{e}}=\frac{n\alpha }{1-\frac{1}{3}n\alpha } \\
& n\alpha =\frac{{{\chi }_{e}}}{1+\frac{1}{3}{{\chi }_{e}}}=\frac{\varepsilon -1}{1+\frac{\varepsilon -1}{3}}=3\frac{\varepsilon -1}{\varepsilon +2} \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.8 KB / 511 B) :

P¯=ε0nαE¯a=ε0nα(E¯+13ε0P¯)P¯=ε0χeE¯χe=nα113nαnα=χe1+13χe=ε11+ε13=3ε1ε+2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>n</mi><mi>&#x03B1;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>n</mi><mi>&#x03B1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>3</mn><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>&#x03B1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><mi>n</mi><mi>&#x03B1;</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>n</mi><mi>&#x03B1;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow><msub><mi>&#x03C7;</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></mfrac></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><mn>3</mn><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B5;</mi><mo>+</mo><mn>2</mn></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Materie in elektrischen und magnetischen Feldern page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results