Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1443.181 on revision:1443
* Page found: Materie in elektrischen und magnetischen Feldern (eq math.1443.181)
(force rerendering)Occurrences on the following pages:
Hash: 3bc4256cf5327ede89a33535cee5f488
TeX (original user input):
\begin{align}
& \bar{p}=Ze\bar{r}=\frac{Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{m}_{e}}}{{{\bar{E}}}_{a}}\left( {{{\bar{r}}}_{k}},t \right)={{\varepsilon }_{0}}\alpha {{{\bar{E}}}_{a}} \\
& \alpha :=\frac{Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{\varepsilon }_{0}}{{m}_{e}}} \\
& \frac{Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{m}_{e}}{{R}^{3}}}:={{\omega }_{0}}^{2} \\
& \Rightarrow \alpha :=\frac{Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{\varepsilon }_{0}}{{m}_{e}}}=4\pi {{R}^{3}}=3{{V}_{Atom}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{\bar {p}}=Ze{\bar {r}}={\frac {Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{m}_{e}}}}{{\bar {E}}_{a}}\left({{\bar {r}}_{k}},t\right)={{\varepsilon }_{0}}\alpha {{\bar {E}}_{a}}\\&\alpha :={\frac {Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{\varepsilon }_{0}}{{m}_{e}}}}\\&{\frac {Z{{e}^{2}}}{4\pi {{\varepsilon }_{0}}{{m}_{e}}{{R}^{3}}}}:={{\omega }_{0}}^{2}\\&\Rightarrow \alpha :={\frac {Z{{e}^{2}}}{{{\omega }_{0}}^{2}{{\varepsilon }_{0}}{{m}_{e}}}}=4\pi {{R}^{3}}=3{{V}_{Atom}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.112 KB / 541 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mi>Z</mi><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>α</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>α</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi>:</mi><mo>=</mo><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>α</mi><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>Z</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>ε</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mn>4</mn><mi>π</mi><msup><mi>R</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mo>=</mo><mn>3</mn><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>t</mi><mi>o</mi><mi>m</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Materie in elektrischen und magnetischen Feldern page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results