Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1438.31 on revision:1438

* Page found: Elektromagnetische Wellen (eq math.1438.31)

(force rerendering)

Occurrences on the following pages:

Hash: 776bbba6c36daafa805415351ed7b17d

TeX (original user input):

\begin{align}
& \varpi (\bar{k})\approx \varpi ({{{\bar{k}}}_{0}})+\left( \bar{k}-{{{\bar{k}}}_{0}} \right){{\nabla }_{k}}\varpi (\bar{k}){{\left. {} \right|}_{\bar{k}={{{\bar{k}}}_{0}}}}+\frac{1}{2!}{{\left( \bar{k}-{{{\bar{k}}}_{0}} \right)}^{2}}{{\left( {{\nabla }_{k}} \right)}^{2}}\varpi (\bar{k}){{\left. {} \right|}_{\bar{k}={{{\bar{k}}}_{0}}}}+... \\
& {{\nabla }_{k}}\varpi (\bar{k}){{\left. {} \right|}_{\bar{k}={{{\bar{k}}}_{0}}}}={{{\bar{v}}}_{g}} \\
& \varpi (\bar{k})\approx \varpi ({{{\bar{k}}}_{0}})+\left( \bar{k}-{{{\bar{k}}}_{0}} \right){{{\bar{v}}}_{g}} \\
\end{align}

TeX (checked):

{\begin{aligned}&\varpi ({\bar {k}})\approx \varpi ({{\bar {k}}_{0}})+\left({\bar {k}}-{{\bar {k}}_{0}}\right){{\nabla }_{k}}\varpi ({\bar {k}}){{\left.{}\right|}_{{\bar {k}}={{\bar {k}}_{0}}}}+{\frac {1}{2!}}{{\left({\bar {k}}-{{\bar {k}}_{0}}\right)}^{2}}{{\left({{\nabla }_{k}}\right)}^{2}}\varpi ({\bar {k}}){{\left.{}\right|}_{{\bar {k}}={{\bar {k}}_{0}}}}+...\\&{{\nabla }_{k}}\varpi ({\bar {k}}){{\left.{}\right|}_{{\bar {k}}={{\bar {k}}_{0}}}}={{\bar {v}}_{g}}\\&\varpi ({\bar {k}})\approx \varpi ({{\bar {k}}_{0}})+\left({\bar {k}}-{{\bar {k}}_{0}}\right){{\bar {v}}_{g}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.625 KB / 534 B) :

ϖ(k¯)ϖ(k¯0)+(k¯k¯0)kϖ(k¯)|k¯=k¯0+12!(k¯k¯0)2(k)2ϖ(k¯)|k¯=k¯0+...kϖ(k¯)|k¯=k¯0=v¯gϖ(k¯)ϖ(k¯0)+(k¯k¯0)v¯g
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03D6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>&#x2248;</mo><mi>&#x03D6;</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi>&#x03D6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi>&#x03D6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03D6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>&#x2248;</mo><mi>&#x03D6;</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektromagnetische Wellen page

Identifiers

  • ϖ
  • k¯
  • ϖ
  • k¯0
  • k¯
  • k¯0
  • k
  • ϖ
  • k¯
  • k¯
  • k¯0
  • k¯
  • k¯0
  • k
  • ϖ
  • k¯
  • k¯
  • k¯0
  • k
  • ϖ
  • k¯
  • k¯
  • k¯0
  • v¯g
  • ϖ
  • k¯
  • ϖ
  • k¯0
  • k¯
  • k¯0
  • v¯g

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results