Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1411.49 on revision:1411
* Page found: Symmetrien und Erhaltungsgrößen (eq math.1411.49)
(force rerendering)Occurrences on the following pages:
Hash: 952ec5d897fabaf0a823bb639b2bf0a3
TeX (original user input):
\left( \begin{matrix}
{{x}_{i}}\acute{\ } \\
{{y}_{i}}\acute{\ } \\
{{z}_{i}}\acute{\ } \\
\end{matrix} \right)=\left( \begin{matrix}
\cos s & \sin s & 0 \\
-\sin s & \cos s & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\left( \begin{matrix}
{{x}_{i}} \\
{{y}_{i}} \\
{{z}_{i}} \\
\end{matrix} \right)\approx \left[ \left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)+\left( \begin{matrix}
0 & s & 0 \\
-s & 0 & 0 \\
0 & 0 & 0 \\
\end{matrix} \right) \right]\left( \begin{matrix}
{{x}_{i}} \\
{{y}_{i}} \\
{{z}_{i}} \\
\end{matrix} \right)
TeX (checked):
\left({\begin{matrix}{{x}_{i}}{\acute {\ }}\\{{y}_{i}}{\acute {\ }}\\{{z}_{i}}{\acute {\ }}\\\end{matrix}}\right)=\left({\begin{matrix}\cos s&\sin s&0\\-\sin s&\cos s&0\\0&0&1\\\end{matrix}}\right)\left({\begin{matrix}{{x}_{i}}\\{{y}_{i}}\\{{z}_{i}}\\\end{matrix}}\right)\approx \left[\left({\begin{matrix}1&0&0\\0&1&0\\0&0&1\\\end{matrix}}\right)+\left({\begin{matrix}0&s&0\\-s&0&0\\0&0&0\\\end{matrix}}\right)\right]\left({\begin{matrix}{{x}_{i}}\\{{y}_{i}}\\{{z}_{i}}\\\end{matrix}}\right)
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.668 KB / 452 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>⁡</mo><mi>s</mi></mtd><mtd><mi>sin</mi><mo>⁡</mo><mi>s</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>−</mo><mi>sin</mi><mo>⁡</mo><mi>s</mi></mtd><mtd><mi>cos</mi><mo>⁡</mo><mi>s</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>≈</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mi>s</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>−</mo><mi>s</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results