Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1411.49 on revision:1411

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1411.49)

(force rerendering)

Occurrences on the following pages:

Hash: 952ec5d897fabaf0a823bb639b2bf0a3

TeX (original user input):

\left( \begin{matrix}
   {{x}_{i}}\acute{\ }  \\
   {{y}_{i}}\acute{\ }  \\
   {{z}_{i}}\acute{\ }  \\
\end{matrix} \right)=\left( \begin{matrix}
   \cos s & \sin s & 0  \\
   -\sin s & \cos s & 0  \\
   0 & 0 & 1  \\
\end{matrix} \right)\left( \begin{matrix}
   {{x}_{i}}  \\
   {{y}_{i}}  \\
   {{z}_{i}}  \\
\end{matrix} \right)\approx \left[ \left( \begin{matrix}
   1 & 0 & 0  \\
   0 & 1 & 0  \\
   0 & 0 & 1  \\
\end{matrix} \right)+\left( \begin{matrix}
   0 & s & 0  \\
   -s & 0 & 0  \\
   0 & 0 & 0  \\
\end{matrix} \right) \right]\left( \begin{matrix}
   {{x}_{i}}  \\
   {{y}_{i}}  \\
   {{z}_{i}}  \\
\end{matrix} \right)

TeX (checked):

\left({\begin{matrix}{{x}_{i}}{\acute {\ }}\\{{y}_{i}}{\acute {\ }}\\{{z}_{i}}{\acute {\ }}\\\end{matrix}}\right)=\left({\begin{matrix}\cos s&\sin s&0\\-\sin s&\cos s&0\\0&0&1\\\end{matrix}}\right)\left({\begin{matrix}{{x}_{i}}\\{{y}_{i}}\\{{z}_{i}}\\\end{matrix}}\right)\approx \left[\left({\begin{matrix}1&0&0\\0&1&0\\0&0&1\\\end{matrix}}\right)+\left({\begin{matrix}0&s&0\\-s&0&0\\0&0&0\\\end{matrix}}\right)\right]\left({\begin{matrix}{{x}_{i}}\\{{y}_{i}}\\{{z}_{i}}\\\end{matrix}}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.668 KB / 452 B) :

(xi´yi´zi´)=(cosssins0sinscoss0001)(xiyizi)[(100010001)+(0s0s00000)](xiyizi)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>s</mi></mtd><mtd><mi>sin</mi><mo>&#x2061;</mo><mi>s</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>sin</mi><mo>&#x2061;</mo><mi>s</mi></mtd><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>s</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mi>s</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>s</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • xi
  • ´
  • yi
  • ´
  • zi
  • ´
  • s
  • s
  • s
  • s
  • xi
  • yi
  • zi
  • s
  • s
  • xi
  • yi
  • zi

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results