Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1411.41 on revision:1411

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1411.41)

(force rerendering)

Occurrences on the following pages:

Hash: e58bb5725c074f530aca1064ae867e07

TeX (original user input):

\begin{align}
  & {{I}_{x}}=\frac{\partial L}{\partial {{{\dot{\bar{r}}}}_{1}}}{{{\bar{e}}}_{x}}+\frac{\partial L}{\partial {{{\dot{\bar{r}}}}_{2}}}{{{\bar{e}}}_{x}}=\frac{\partial L}{\partial {{{\dot{x}}}_{1}}}+\frac{\partial L}{\partial {{{\dot{x}}}_{2}}}={{m}_{1}}{{{\dot{x}}}_{1}}+{{m}_{2}}{{{\dot{x}}}_{2}}={{P}_{x}}=const \\
 & {{I}_{y}}=\frac{\partial L}{\partial {{{\dot{\bar{r}}}}_{1}}}{{{\bar{e}}}_{y}}+\frac{\partial L}{\partial {{{\dot{\bar{r}}}}_{2}}}{{{\bar{e}}}_{y}}=\frac{\partial L}{\partial {{{\dot{y}}}_{1}}}+\frac{\partial L}{\partial {{{\dot{y}}}_{2}}}={{m}_{1}}{{{\dot{y}}}_{1}}+{{m}_{2}}{{{\dot{y}}}_{2}}={{P}_{y}}=const \\
 & {{I}_{z}}=\frac{\partial L}{\partial {{{\dot{\bar{r}}}}_{1}}}{{{\bar{e}}}_{z}}+\frac{\partial L}{\partial {{{\dot{\bar{r}}}}_{2}}}{{{\bar{e}}}_{z}}=\frac{\partial L}{\partial {{{\dot{z}}}_{1}}}+\frac{\partial L}{\partial {{{\dot{z}}}_{2}}}={{m}_{1}}{{{\dot{z}}}_{1}}+{{m}_{2}}{{{\dot{z}}}_{2}}={{P}_{z}}=const \\
\end{align}

TeX (checked):

{\begin{aligned}&{{I}_{x}}={\frac {\partial L}{\partial {{\dot {\bar {r}}}_{1}}}}{{\bar {e}}_{x}}+{\frac {\partial L}{\partial {{\dot {\bar {r}}}_{2}}}}{{\bar {e}}_{x}}={\frac {\partial L}{\partial {{\dot {x}}_{1}}}}+{\frac {\partial L}{\partial {{\dot {x}}_{2}}}}={{m}_{1}}{{\dot {x}}_{1}}+{{m}_{2}}{{\dot {x}}_{2}}={{P}_{x}}=const\\&{{I}_{y}}={\frac {\partial L}{\partial {{\dot {\bar {r}}}_{1}}}}{{\bar {e}}_{y}}+{\frac {\partial L}{\partial {{\dot {\bar {r}}}_{2}}}}{{\bar {e}}_{y}}={\frac {\partial L}{\partial {{\dot {y}}_{1}}}}+{\frac {\partial L}{\partial {{\dot {y}}_{2}}}}={{m}_{1}}{{\dot {y}}_{1}}+{{m}_{2}}{{\dot {y}}_{2}}={{P}_{y}}=const\\&{{I}_{z}}={\frac {\partial L}{\partial {{\dot {\bar {r}}}_{1}}}}{{\bar {e}}_{z}}+{\frac {\partial L}{\partial {{\dot {\bar {r}}}_{2}}}}{{\bar {e}}_{z}}={\frac {\partial L}{\partial {{\dot {z}}_{1}}}}+{\frac {\partial L}{\partial {{\dot {z}}_{2}}}}={{m}_{1}}{{\dot {z}}_{1}}+{{m}_{2}}{{\dot {z}}_{2}}={{P}_{z}}=const\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (9.142 KB / 538 B) :

Ix=Lr¯˙1e¯x+Lr¯˙2e¯x=Lx˙1+Lx˙2=m1x˙1+m2x˙2=Px=constIy=Lr¯˙1e¯y+Lr¯˙2e¯y=Ly˙1+Ly˙2=m1y˙1+m2y˙2=Py=constIz=Lr¯˙1e¯z+Lr¯˙2e¯z=Lz˙1+Lz˙2=m1z˙1+m2z˙2=Pz=const
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>I</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>I</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>I</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>z</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>z</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>z</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>z</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • Ix
  • L
  • r¯˙1
  • e¯x
  • L
  • r¯˙2
  • e¯x
  • L
  • x˙1
  • L
  • x˙2
  • m1
  • x˙1
  • m2
  • x˙2
  • Px
  • c
  • o
  • n
  • s
  • t
  • Iy
  • L
  • r¯˙1
  • e¯y
  • L
  • r¯˙2
  • e¯y
  • L
  • y˙1
  • L
  • y˙2
  • m1
  • y˙1
  • m2
  • y˙2
  • Py
  • c
  • o
  • n
  • s
  • t
  • Iz
  • L
  • r¯˙1
  • e¯z
  • L
  • r¯˙2
  • e¯z
  • L
  • z˙1
  • L
  • z˙2
  • m1
  • z˙1
  • m2
  • z˙2
  • Pz
  • c
  • o
  • n
  • s
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results