Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1411.40 on revision:1411
* Page found: Symmetrien und Erhaltungsgrößen (eq math.1411.40)
(force rerendering)Occurrences on the following pages:
Hash: 7f9ad1d057887907789a7e56326a1f6c
TeX (original user input):
\begin{align}
& L({{{\bar{r}}}_{1}},{{{\bar{r}}}_{2}},{{{\dot{\bar{r}}}}_{1}},{{{\dot{\bar{r}}}}_{2}})=\frac{{{m}_{1}}}{2}{{{\dot{\bar{r}}}}_{1}}^{2}+\frac{{{m}_{2}}}{2}{{{\dot{\bar{r}}}}_{2}}^{2}-V({{{\bar{r}}}_{1}}-{{{\bar{r}}}_{2}}) \\
& L({{h}^{s}}\left( {{{\bar{r}}}_{1}} \right),{{h}^{s}}\left( {{{\bar{r}}}_{2}} \right),{{{\dot{\bar{r}}}}_{1}},{{{\dot{\bar{r}}}}_{2}})=\frac{{{m}_{1}}}{2}{{{\dot{\bar{r}}}}_{1}}^{2}+\frac{{{m}_{2}}}{2}{{{\dot{\bar{r}}}}_{2}}^{2}-V(\left( {{{\bar{r}}}_{1}}-s{{{\bar{e}}}_{i}} \right)-\left( {{{\bar{r}}}_{2}}-s{{{\bar{e}}}_{i}} \right))=L({{{\bar{r}}}_{1}},{{{\bar{r}}}_{2}},{{{\dot{\bar{r}}}}_{1}},{{{\dot{\bar{r}}}}_{2}}) \\
\end{align}
TeX (checked):
{\begin{aligned}&L({{\bar {r}}_{1}},{{\bar {r}}_{2}},{{\dot {\bar {r}}}_{1}},{{\dot {\bar {r}}}_{2}})={\frac {{m}_{1}}{2}}{{\dot {\bar {r}}}_{1}}^{2}+{\frac {{m}_{2}}{2}}{{\dot {\bar {r}}}_{2}}^{2}-V({{\bar {r}}_{1}}-{{\bar {r}}_{2}})\\&L({{h}^{s}}\left({{\bar {r}}_{1}}\right),{{h}^{s}}\left({{\bar {r}}_{2}}\right),{{\dot {\bar {r}}}_{1}},{{\dot {\bar {r}}}_{2}})={\frac {{m}_{1}}{2}}{{\dot {\bar {r}}}_{1}}^{2}+{\frac {{m}_{2}}{2}}{{\dot {\bar {r}}}_{2}}^{2}-V(\left({{\bar {r}}_{1}}-s{{\bar {e}}_{i}}\right)-\left({{\bar {r}}_{2}}-s{{\bar {e}}_{i}}\right))=L({{\bar {r}}_{1}},{{\bar {r}}_{2}},{{\dot {\bar {r}}}_{1}},{{\dot {\bar {r}}}_{2}})\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (7.281 KB / 533 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>L</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><mi>V</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>L</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>,</mo><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><mi>V</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>−</mo><mi>s</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>−</mo><mi>s</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo stretchy="false">)</mo><mo>=</mo><mi>L</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results