Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1411.183 on revision:1411

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1411.183)

(force rerendering)

Occurrences on the following pages:

Hash: b504d41afaf5970c24a73fa4f3003895

TeX (original user input):

\frac{dr}{d\phi }=\frac{{\dot{r}}}{{\dot{\phi }}}=\frac{m{{r}^{2}}\sqrt{\frac{2}{m}\left( E-\tilde{V}(r) \right)}}{l}={{r}^{2}}\sqrt{\frac{2m}{{{l}^{2}}}\left( E-\tilde{V}(r) \right)}

TeX (checked):

{\frac {dr}{d\phi }}={\frac {\dot {r}}{\dot {\phi }}}={\frac {m{{r}^{2}}{\sqrt {{\frac {2}{m}}\left(E-{\tilde {V}}(r)\right)}}}{l}}={{r}^{2}}{\sqrt {{\frac {2m}{{l}^{2}}}\left(E-{\tilde {V}}(r)\right)}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.267 KB / 383 B) :

drdϕ=r˙ϕ˙=mr22m(EV~(r))l=r22ml2(EV~(r))
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>~</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msqrt></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>=</mo><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>~</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msqrt></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • d
  • r
  • d
  • ϕ
  • r˙
  • ϕ˙
  • m
  • r
  • m
  • E
  • V~
  • r
  • l
  • r
  • m
  • l
  • E
  • V~
  • r

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results