Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1411.127 on revision:1411

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1411.127)

(force rerendering)

Occurrences on the following pages:

Hash: 7eeaff6531a288a9fe3f6235f7a8c6d5

TeX (original user input):

\begin{align}
  & I=\sum\limits_{i=1}^{f+1}{\frac{\partial L}{\partial {{{\dot{q}}}_{i}}}{{\left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)}_{s=0}}}=\frac{\partial \bar{L}}{\partial {{{\dot{q}}}_{f+1}}} \\
 & mit\ \left( \frac{d}{ds}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}}) \right)=\left( 0,...,0,1 \right)\quad f\ Nullen,1\ an\ Stelle\ f+1\ mit\ {{q}_{f+1}}=t \\
\end{align}

TeX (checked):

{\begin{aligned}&I=\sum \limits _{i=1}^{f+1}{{\frac {\partial L}{\partial {{\dot {q}}_{i}}}}{{\left({\frac {d}{ds}}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}})\right)}_{s=0}}}={\frac {\partial {\bar {L}}}{\partial {{\dot {q}}_{f+1}}}}\\&mit\ \left({\frac {d}{ds}}{{h}^{s}}({{q}_{1}},...,{{q}_{f+1}})\right)=\left(0,...,0,1\right)\quad f\ Nullen,1\ an\ Stelle\ f+1\ mit\ {{q}_{f+1}}=t\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.996 KB / 626 B) :

I=i=1f+1Lq˙i(ddshs(q1,...,qf+1))s=0=L¯q˙f+1mit(ddshs(q1,...,qf+1))=(0,...,0,1)fNullen,1anStellef+1mitqf+1=t
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>I</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>f</mi><mo>+</mo><mn>1</mn></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>f</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>s</mi><mo>=</mo><mn>0</mn></mrow></mrow></msub></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>f</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>m</mi><mi>i</mi><mi>t</mi><mspace width="0.5em"/><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>f</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mi>f</mi><mspace width="0.5em"/><mi>N</mi><mi>u</mi><mi>l</mi><mi>l</mi><mi>e</mi><mi>n</mi><mo>,</mo><mn>1</mn><mspace width="0.5em"/><mi>a</mi><mi>n</mi><mspace width="0.5em"/><mi>S</mi><mi>t</mi><mi>e</mi><mi>l</mi><mi>l</mi><mi>e</mi><mspace width="0.5em"/><mi>f</mi><mo>+</mo><mn>1</mn><mspace width="0.5em"/><mi>m</mi><mi>i</mi><mi>t</mi><mspace width="0.5em"/><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>f</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><mo>=</mo><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • I
  • i
  • f
  • L
  • q˙i
  • d
  • d
  • s
  • h
  • s
  • q1
  • qf+1
  • s
  • L¯
  • q˙f+1
  • m
  • i
  • t
  • d
  • d
  • s
  • h
  • s
  • q1
  • qf+1
  • f
  • N
  • u
  • l
  • l
  • e
  • n
  • a
  • n
  • S
  • t
  • e
  • l
  • l
  • e
  • f
  • m
  • i
  • t
  • qf+1
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results