Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1410.52 on revision:1410

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1410.52)

(force rerendering)

Occurrences on the following pages:

Hash: 8e23ca0118bbad6dd5639ba7aba96d89

TeX (original user input):

\left( \begin{matrix}
   {{x}_{i}}\acute{\ }  \\
   {{y}_{i}}\acute{\ }  \\
   {{z}_{i}}\acute{\ }  \\
\end{matrix} \right)=\left( \begin{matrix}
   {{x}_{i}}  \\
   {{y}_{i}}  \\
   {{z}_{i}}  \\
\end{matrix} \right)+s\left( \begin{matrix}
   {{y}_{i}}  \\
   -{{x}_{i}}  \\
   0  \\
\end{matrix} \right)=\left( \begin{matrix}
   {{x}_{i}}  \\
   {{y}_{i}}  \\
   {{z}_{i}}  \\
\end{matrix} \right)+s\left( {{{\bar{r}}}_{i}}\times {{{\bar{e}}}_{z}} \right)

TeX (checked):

\left({\begin{matrix}{{x}_{i}}{\acute {\ }}\\{{y}_{i}}{\acute {\ }}\\{{z}_{i}}{\acute {\ }}\\\end{matrix}}\right)=\left({\begin{matrix}{{x}_{i}}\\{{y}_{i}}\\{{z}_{i}}\\\end{matrix}}\right)+s\left({\begin{matrix}{{y}_{i}}\\-{{x}_{i}}\\0\\\end{matrix}}\right)=\left({\begin{matrix}{{x}_{i}}\\{{y}_{i}}\\{{z}_{i}}\\\end{matrix}}\right)+s\left({{\bar {r}}_{i}}\times {{\bar {e}}_{z}}\right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.034 KB / 402 B) :

(xi´yi´zi´)=(xiyizi)+s(yixi0)=(xiyizi)+s(r¯i×e¯z)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>s</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>s</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>&#x00D7;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>z</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • xi
  • ´
  • yi
  • ´
  • zi
  • ´
  • xi
  • yi
  • zi
  • s
  • yi
  • xi
  • xi
  • yi
  • zi
  • s
  • r¯i
  • e¯z

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results