Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1410.205 on revision:1410

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1410.205)

(force rerendering)

Occurrences on the following pages:

Hash: f47498f15ea04cc2907ebfe7b8859968

TeX (original user input):

\begin{align}
  & \phi -{{\phi }_{o}}=\int\limits_{{{r}_{o}}}^{r}{\frac{dr\acute{\ }}{r{{\acute{\ }}^{2}}}}\frac{1}{\sqrt{\frac{2mE}{{{l}^{2}}}+\frac{2mk}{{{l}^{2}}r\acute{\ }}-\frac{1}{r{{\acute{\ }}^{2}}}}}=\int\limits_{{{r}_{o}}}^{r}{\frac{dr\acute{\ }}{r{{\acute{\ }}^{2}}}}\frac{1}{\sqrt{D\left[ 1-\frac{1}{D}{{\left( \frac{1}{r{{\acute{\ }}^{{}}}}-\frac{mk}{{{l}^{2}}} \right)}^{2}} \right]}}=\int\limits_{{{r}_{o}}}^{r}{\frac{dr\acute{\ }}{r{{\acute{\ }}^{2}}}}\frac{1}{\sqrt{D}\left[ 1-\frac{1}{D}{{\left( \frac{1}{r{{\acute{\ }}^{{}}}}-\frac{mk}{{{l}^{2}}} \right)}^{{}}} \right]} \\ 
 & \int\limits_{{{r}_{o}}}^{r}{\frac{dr\acute{\ }}{r{{\acute{\ }}^{2}}}}\frac{1}{\sqrt{D}\left[ 1-\frac{1}{D}{{\left( \frac{1}{r{{\acute{\ }}^{{}}}}-\frac{mk}{{{l}^{2}}} \right)}^{{}}} \right]}=\int\limits_{{{\vartheta }_{0}}}^{\vartheta }{d\vartheta \acute{\ }\sin \vartheta \acute{\ }\frac{1}{\sqrt{1-{{\cos }^{2}}\vartheta }\acute{\ }}=}\int\limits_{{{\vartheta }_{0}}}^{\vartheta }{d\vartheta \acute{\ }=\vartheta -{{\vartheta }_{0}}} \\ 
 & \vartheta -{{\vartheta }_{0}}=\arccos \frac{1}{\sqrt{D}}\left( \frac{1}{{{r}^{{}}}}-\frac{mk}{{{l}^{2}}} \right)-\arccos \frac{1}{\sqrt{D}}\left( \frac{1}{{{r}_{o}}^{{}}}-\frac{mk}{{{l}^{2}}} \right) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\phi -{{\phi }_{o}}=\int \limits _{{r}_{o}}^{r}{\frac {dr{\acute {\ }}}{r{{\acute {\ }}^{2}}}}{\frac {1}{\sqrt {{\frac {2mE}{{l}^{2}}}+{\frac {2mk}{{{l}^{2}}r{\acute {\ }}}}-{\frac {1}{r{{\acute {\ }}^{2}}}}}}}=\int \limits _{{r}_{o}}^{r}{\frac {dr{\acute {\ }}}{r{{\acute {\ }}^{2}}}}{\frac {1}{\sqrt {D\left[1-{\frac {1}{D}}{{\left({\frac {1}{r{{\acute {\ }}^{}}}}-{\frac {mk}{{l}^{2}}}\right)}^{2}}\right]}}}=\int \limits _{{r}_{o}}^{r}{\frac {dr{\acute {\ }}}{r{{\acute {\ }}^{2}}}}{\frac {1}{{\sqrt {D}}\left[1-{\frac {1}{D}}{{\left({\frac {1}{r{{\acute {\ }}^{}}}}-{\frac {mk}{{l}^{2}}}\right)}^{}}\right]}}\\&\int \limits _{{r}_{o}}^{r}{\frac {dr{\acute {\ }}}{r{{\acute {\ }}^{2}}}}{\frac {1}{{\sqrt {D}}\left[1-{\frac {1}{D}}{{\left({\frac {1}{r{{\acute {\ }}^{}}}}-{\frac {mk}{{l}^{2}}}\right)}^{}}\right]}}=\int \limits _{{\vartheta }_{0}}^{\vartheta }{d\vartheta {\acute {\ }}\sin \vartheta {\acute {\ }}{\frac {1}{{\sqrt {1-{{\cos }^{2}}\vartheta }}{\acute {\ }}}}=}\int \limits _{{\vartheta }_{0}}^{\vartheta }{d\vartheta {\acute {\ }}=\vartheta -{{\vartheta }_{0}}}\\&\vartheta -{{\vartheta }_{0}}=\arccos {\frac {1}{\sqrt {D}}}\left({\frac {1}{{r}^{}}}-{\frac {mk}{{l}^{2}}}\right)-\arccos {\frac {1}{\sqrt {D}}}\left({\frac {1}{{{r}_{o}}^{}}}-{\frac {mk}{{l}^{2}}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (12.602 KB / 797 B) :

ϕϕo=rordr´r´212mEl2+2mkl2r´1r´2=rordr´r´21D[11D(1r´mkl2)2]=rordr´r´21D[11D(1r´mkl2)]rordr´r´21D[11D(1r´mkl2)]=ϑ0ϑdϑ´sinϑ´11cos2ϑ´=ϑ0ϑdϑ´=ϑϑ0ϑϑ0=arccos1D(1rmkl2)arccos1D(1romkl2)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03D5;</mi><mo>&#x2212;</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><mi>E</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow></mrow></msqrt></mrow></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>D</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></msqrt></mrow></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>D</mi></msqrt></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>D</mi></msqrt></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>D</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03D1;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03D1;</mi></mrow></msqrt></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo>=</mo></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03D1;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>=</mo><mi>&#x03D1;</mi><mo>&#x2212;</mo><msub><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03D1;</mi><mo>&#x2212;</mo><msub><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><mi>arccos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>D</mi></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>arccos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>D</mi></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • ϕ
  • ϕo
  • ro
  • r
  • r
  • ´
  • r
  • ´
  • m
  • E
  • l
  • m
  • k
  • l
  • r
  • ´
  • r
  • ´
  • ro
  • r
  • r
  • ´
  • r
  • ´
  • D
  • D
  • r
  • ´
  • m
  • k
  • l
  • ro
  • r
  • r
  • ´
  • r
  • ´
  • D
  • D
  • r
  • ´
  • m
  • k
  • l
  • ro
  • r
  • r
  • ´
  • r
  • ´
  • D
  • D
  • r
  • ´
  • m
  • k
  • l
  • ϑ0
  • ϑ
  • ϑ
  • ´
  • ϑ
  • ´
  • ϑ
  • ´
  • ϑ0
  • ϑ
  • ϑ
  • ´
  • ϑ
  • ϑ0
  • ϑ
  • ϑ0
  • D
  • r
  • m
  • k
  • l
  • D
  • ro
  • m
  • k
  • l

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results