Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1410.204 on revision:1410

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1410.204)

(force rerendering)

Occurrences on the following pages:

Hash: afa57157c4dccac946116692f74b7fda

TeX (original user input):

\begin{align}
  & \cos \vartheta \acute{\ }:=\frac{1}{\sqrt{D}}\left( \frac{1}{r{{\acute{\ }}^{{}}}}-\frac{mk}{{{l}^{2}}} \right)\Rightarrow \frac{d\cos \vartheta }{dr\acute{\ }}=-\frac{1}{\sqrt{D}}\left( \frac{1}{r{{\acute{\ }}^{2}}} \right) \\ 
 & \frac{d\cos \vartheta }{d\vartheta }=-\sin \vartheta \acute{\ }\Rightarrow -\sin \vartheta d\vartheta =d\cos \vartheta  \\ 
 & -\sin \vartheta \acute{\ }d\vartheta =-\frac{1}{\sqrt{D}}\left( \frac{dr\acute{\ }}{r{{\acute{\ }}^{2}}} \right) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\cos \vartheta {\acute {\ }}:={\frac {1}{\sqrt {D}}}\left({\frac {1}{r{{\acute {\ }}^{}}}}-{\frac {mk}{{l}^{2}}}\right)\Rightarrow {\frac {d\cos \vartheta }{dr{\acute {\ }}}}=-{\frac {1}{\sqrt {D}}}\left({\frac {1}{r{{\acute {\ }}^{2}}}}\right)\\&{\frac {d\cos \vartheta }{d\vartheta }}=-\sin \vartheta {\acute {\ }}\Rightarrow -\sin \vartheta d\vartheta =d\cos \vartheta \\&-\sin \vartheta {\acute {\ }}d\vartheta =-{\frac {1}{\sqrt {D}}}\left({\frac {dr{\acute {\ }}}{r{{\acute {\ }}^{2}}}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.62 KB / 534 B) :

cosϑ´:=1D(1r´mkl2)dcosϑdr´=1D(1r´2)dcosϑdϑ=sinϑ´sinϑdϑ=dcosϑsinϑ´dϑ=1D(dr´r´2)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>D</mi></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>k</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>D</mi></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>&#x21D2;</mo><mo>&#x2212;</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>d</mi><mi>&#x03D1;</mi><mo>=</mo><mi>d</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>d</mi><mi>&#x03D1;</mi><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mi>D</mi></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • ϑ
  • ´
  • D
  • r
  • ´
  • m
  • k
  • l
  • d
  • ϑ
  • d
  • r
  • ´
  • D
  • r
  • ´
  • d
  • ϑ
  • d
  • ϑ
  • ϑ
  • ´
  • ϑ
  • d
  • ϑ
  • d
  • ϑ
  • ϑ
  • ´
  • d
  • ϑ
  • D
  • d
  • r
  • ´
  • r
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results