Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1410.172 on revision:1410

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1410.172)

(force rerendering)

Occurrences on the following pages:

Hash: c2f5f2df6af085178f136574de58454d

TeX (original user input):

\begin{align}
  & m\ddot{r}\dot{r}-\frac{{{l}^{2}}}{m{{r}^{3}}}\dot{r}+\dot{r}V\acute{\ }(r)=0 \\ 
 & m\ddot{r}\dot{r}=\frac{d}{dt}\left( \frac{m}{2}{{{\dot{r}}}^{2}} \right) \\ 
 & \frac{{{l}^{2}}}{m{{r}^{3}}}\dot{r}=\frac{d}{dt}\left( -\frac{{{l}^{2}}}{2m{{r}^{2}}} \right) \\ 
 & \dot{r}V\acute{\ }(r)=\frac{d}{dt}V(r) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&m{\ddot {r}}{\dot {r}}-{\frac {{l}^{2}}{m{{r}^{3}}}}{\dot {r}}+{\dot {r}}V{\acute {\ }}(r)=0\\&m{\ddot {r}}{\dot {r}}={\frac {d}{dt}}\left({\frac {m}{2}}{{\dot {r}}^{2}}\right)\\&{\frac {{l}^{2}}{m{{r}^{3}}}}{\dot {r}}={\frac {d}{dt}}\left(-{\frac {{l}^{2}}{2m{{r}^{2}}}}\right)\\&{\dot {r}}V{\acute {\ }}(r)={\frac {d}{dt}}V(r)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.043 KB / 524 B) :

mr¨r˙l2mr3r˙+r˙V´(r)=0mr¨r˙=ddt(m2r˙2)l2mr3r˙=ddt(l22mr2)r˙V´(r)=ddtV(r)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>˙</mo></mover></mrow></mrow><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • m
  • r¨
  • r˙
  • l
  • m
  • r
  • r˙
  • r˙
  • V
  • ´
  • r
  • m
  • r¨
  • r˙
  • d
  • d
  • t
  • m
  • r˙
  • l
  • m
  • r
  • r˙
  • d
  • d
  • t
  • l
  • m
  • r
  • r˙
  • V
  • ´
  • r
  • d
  • d
  • t
  • V
  • r

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results