Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1410.15 on revision:1410

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1410.15)

(force rerendering)

Occurrences on the following pages:

Hash: 65becc1499bbc23c8072de8189e74cf4

TeX (original user input):

\begin{align}
  & L({{h}^{s}}({{{\bar{r}}}_{i}}),{{{\dot{\bar{r}}}}_{i}})=\frac{1}{2}\sum\limits_{i=1}^{N}{{{m}_{i}}{{{\dot{\bar{r}}}}_{i}}^{2}-V({{{\bar{r}}}_{1}}+s{{{\bar{e}}}_{x}},...,{{{\bar{r}}}_{N}}+s{{{\bar{e}}}_{x}})}=L({{{\bar{r}}}_{i}},{{{\dot{\bar{r}}}}_{i}})\ Forderung! \\ 
 & \frac{dL}{ds}=-\sum\limits_{i=1}^{N}{\left( {{\nabla }_{ri}}\cdot {{{\bar{e}}}_{x}} \right)}V=-\sum\limits_{i=1}^{N}{\frac{\partial }{\partial {{x}_{i}}}}V=0\quad Forderung! \\ 
\end{align}

TeX (checked):

{\begin{aligned}&L({{h}^{s}}({{\bar {r}}_{i}}),{{\dot {\bar {r}}}_{i}})={\frac {1}{2}}\sum \limits _{i=1}^{N}{{{m}_{i}}{{\dot {\bar {r}}}_{i}}^{2}-V({{\bar {r}}_{1}}+s{{\bar {e}}_{x}},...,{{\bar {r}}_{N}}+s{{\bar {e}}_{x}})}=L({{\bar {r}}_{i}},{{\dot {\bar {r}}}_{i}})\ Forderung!\\&{\frac {dL}{ds}}=-\sum \limits _{i=1}^{N}{\left({{\nabla }_{ri}}\cdot {{\bar {e}}_{x}}\right)}V=-\sum \limits _{i=1}^{N}{\frac {\partial }{\partial {{x}_{i}}}}V=0\quad Forderung!\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.936 KB / 699 B) :

L(hs(r¯i),r¯˙i)=12i=1Nmir¯˙i2V(r¯1+se¯x,...,r¯N+se¯x)=L(r¯i,r¯˙i)Forderung!dLds=i=1N(rie¯x)V=i=1NxiV=0Forderung!
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>L</mi><mo stretchy="false">(</mo><msup><mi>h</mi><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msup><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mi>V</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><mi>s</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo>+</mo><mi>s</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>L</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo stretchy="false">)</mo><mspace width="0.5em"/><mi>F</mi><mi>o</mi><mi>r</mi><mi>d</mi><mi>e</mi><mi>r</mi><mi>u</mi><mi>n</mi><mi>g</mi><mi>!</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>r</mi><mi>i</mi></mrow></mrow></msub><mo>&#x22C5;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>e</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>V</mi><mo>=</mo><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>V</mi><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>F</mi><mi>o</mi><mi>r</mi><mi>d</mi><mi>e</mi><mi>r</mi><mi>u</mi><mi>n</mi><mi>g</mi><mi>!</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • L
  • h
  • s
  • r¯i
  • r¯˙i
  • i
  • N
  • mi
  • r¯˙i
  • V
  • r¯1
  • s
  • e¯x
  • r¯N
  • s
  • e¯x
  • L
  • r¯i
  • r¯˙i
  • F
  • o
  • r
  • d
  • e
  • r
  • u
  • n
  • g
  • d
  • L
  • d
  • s
  • i
  • N
  • r
  • i
  • e¯x
  • V
  • i
  • N
  • xi
  • V
  • F
  • o
  • r
  • d
  • e
  • r
  • u
  • n
  • g

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results