Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1410.113 on revision:1410

* Page found: Symmetrien und Erhaltungsgrößen (eq math.1410.113)

(force rerendering)

Occurrences on the following pages:

Hash: 7b6aeddfb0af5293959dc91206b54e26

TeX (original user input):

\begin{align}
  & \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)} \right)\left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)}\left| _{\lambda =1} \right.=2\lambda T\left| _{\lambda =1} \right.\Leftrightarrow \sum\limits_{k=1}^{N}{\left( \frac{\partial T}{\partial \left( {{{\dot{q}}}_{k}} \right)} \right){{{\dot{q}}}_{k}}}=2T \\ 
 & \left( \frac{\partial \left( \lambda {{{\dot{q}}}_{k}} \right)}{\partial \lambda } \right)={{{\dot{q}}}_{k}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{k=1}^{N}{\left({\frac {\partial T}{\partial \left(\lambda {{\dot {q}}_{k}}\right)}}\right)\left({\frac {\partial \left(\lambda {{\dot {q}}_{k}}\right)}{\partial \lambda }}\right)}\left|_{\lambda =1}\right.=2\lambda T\left|_{\lambda =1}\right.\Leftrightarrow \sum \limits _{k=1}^{N}{\left({\frac {\partial T}{\partial \left({{\dot {q}}_{k}}\right)}}\right){{\dot {q}}_{k}}}=2T\\&\left({\frac {\partial \left(\lambda {{\dot {q}}_{k}}\right)}{\partial \lambda }}\right)={{\dot {q}}_{k}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.501 KB / 525 B) :

k=1N(T(λq˙k))((λq˙k)λ)|λ=1=2λT|λ=1k=1N(T(q˙k))q˙k=2T((λq˙k)λ)=q˙k
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03BB;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi><mo>=</mo><mn>1</mn></mrow></mrow></msub><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow><mo>=</mo><mn>2</mn><mi>&#x03BB;</mi><mi>T</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BB;</mi><mo>=</mo><mn>1</mn></mrow></mrow></msub><mo fence="true" stretchy="true" symmetric="true" data-mjx-texclass="CLOSE"></mo></mrow><mo>&#x21D4;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>T</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>=</mo><mn>2</mn><mi>T</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03BB;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Symmetrien und Erhaltungsgrößen page

Identifiers

  • k
  • N
  • T
  • λ
  • q˙k
  • λ
  • q˙k
  • λ
  • λ
  • λ
  • T
  • λ
  • k
  • N
  • T
  • q˙k
  • q˙k
  • T
  • λ
  • q˙k
  • λ
  • q˙k

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results