Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1356.118 on revision:1356

* Page found: Dynamische Systeme und deterministisches Chaos (eq math.1356.118)

(force rerendering)

Occurrences on the following pages:

Hash: 9ebb37b63bda7e3f745e7d4c12beb09a

TeX (original user input):

\begin{align}
  & \bar{\varpi }{{*}^{(3)}}=\left( \begin{matrix}
   0 & 0 & \omega   \\
\end{matrix} \right): \\
 & 0=\det (A-\lambda 1)=\left| \begin{matrix}
   -\lambda  & -{{k}_{1}}\omega  & 0  \\
   {{k}_{2}}\omega  & -\lambda  & {{0}_{{}}}  \\
   0 & 0 & -\lambda   \\
\end{matrix} \right|=-\lambda \left( {{\lambda }^{2}}+{{k}_{1}}{{k}_{2}}{{\omega }^{2}} \right) \\
 & \Rightarrow {{\lambda }_{1}}^{(3)}=0,{{\lambda }_{2/3}}^{(2)}=\pm i\omega \sqrt{{{k}_{1}}{{k}_{2}}} \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.253 KB / 589 B) :

ϖ¯*(3)=(00ω):0=det(Aλ1)=|λk1ω0k2ωλ000λ|=λ(λ2+k1k2ω2)λ1(3)=0,λ2/3(2)=±iωk1k2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D6;</mi><mo>¯</mo></mover></mrow></mrow><msup><mo>*</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mi>&#x03C9;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>:</mi></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>det</mi><mo>&#x2061;</mo><mo stretchy="false">(</mo><mi>A</mi><mo>&#x2212;</mo><mi>&#x03BB;</mi><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mo>&#x2212;</mo><mi>&#x03BB;</mi></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>&#x03C9;</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mi>&#x03C9;</mi></mtd><mtd><mo>&#x2212;</mo><mi>&#x03BB;</mi></mtd><mtd><msub><mn>0</mn><mrow data-mjx-texclass="ORD"></mrow></msub></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mi>&#x03BB;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>&#x03BB;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo><msup><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mo>/</mo><mn>3</mn></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mo>&#x00B1;</mo><mi>i</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msqrt></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamische Systeme und deterministisches Chaos page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results