Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1356.115 on revision:1356

* Page found: Dynamische Systeme und deterministisches Chaos (eq math.1356.115)

(force rerendering)

Occurrences on the following pages:

Hash: ee5ccffdc2c06e4f48b1c07f0100b1cd

TeX (original user input):

\left( \begin{matrix}
   \delta {{{\dot{\omega }}}_{1}}  \\
   \delta {{{\dot{\omega }}}_{2}}  \\
   \delta {{{\dot{\omega }}}_{3}}  \\
\end{matrix} \right)=A\left( \begin{matrix}
   \delta {{\omega }_{1}}  \\
   \delta {{\omega }_{2}}  \\
   \delta {{\omega }_{3}}  \\
\end{matrix} \right)=\left( \begin{matrix}
   0 & -{{k}_{1}}{{\omega }_{3}} & -{{k}_{1}}{{\omega }_{2}}  \\
   {{k}_{2}}{{\omega }_{3}} & 0 & {{k}_{2}}{{\omega }_{1}}  \\
   -{{k}_{3}}{{\omega }_{2}} & -{{k}_{3}}{{\omega }_{1}} & 0  \\
\end{matrix} \right)\left( \begin{matrix}
   \delta {{\omega }_{1}}  \\
   \delta {{\omega }_{2}}  \\
   \delta {{\omega }_{3}}  \\
\end{matrix} \right)

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.466 KB / 406 B) :

(δω˙1δω˙2δω˙3)=A(δω1δω2δω3)=(0k1ω3k1ω2k2ω30k2ω1k3ω2k3ω10)(δω1δω2δω3)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>A</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd><mtd><mn>0</mn></mtd><mtd><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamische Systeme und deterministisches Chaos page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results