Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1356.112 on revision:1356

* Page found: Dynamische Systeme und deterministisches Chaos (eq math.1356.112)

(force rerendering)

Occurrences on the following pages:

Hash: 6fe81f9ed14d553db0306dbbdd9df587

TeX (original user input):

\begin{align}
  & {{{\dot{\omega }}}_{1}}=-\frac{\left( {{J}_{3}}-{{J}_{2}} \right)}{{{J}_{1}}}{{\omega }_{2}}{{\omega }_{3}}=-{{k}_{1}}{{\omega }_{2}}{{\omega }_{3}} \\
 & {{{\dot{\omega }}}_{2}}=\frac{\left( {{J}_{3}}-{{J}_{1}} \right)}{{{J}_{2}}}{{\omega }_{3}}{{\omega }_{1}}={{k}_{2}}{{\omega }_{3}}{{\omega }_{1}} \\
 & {{{\dot{\omega }}}_{3}}=-\frac{\left( {{J}_{2}}-{{J}_{1}} \right)}{{{J}_{3}}}{{\omega }_{1}}{{\omega }_{2}}=-{{k}_{3}}{{\omega }_{1}}{{\omega }_{2}} \\
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.618 KB / 455 B) :

ω˙1=(J3J2)J1ω2ω3=k1ω2ω3ω˙2=(J3J1)J2ω3ω1=k2ω3ω1ω˙3=(J2J1)J3ω1ω2=k3ω1ω2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mfrac></mrow><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mfrac></mrow><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mrow></mfrac></mrow><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamische Systeme und deterministisches Chaos page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results