Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1345.98 on revision:1345

* Page found: Mechanik des starren Körpers (eq math.1345.98)

(force rerendering)

Occurrences on the following pages:

Hash: 2d8e1c82100b7aff8a324d0e453874e9

TeX (original user input):

\frac{d}{dt}\bar{l}=\frac{d}{dt}\left( {{{\bar{r}}}_{s}}\times M\bar{V}+\int_{{}}^{{}}{{{d}^{3}}x\rho (\bar{x})\bar{x}}\times \left( \bar{\omega }\times \bar{x} \right) \right)=\frac{d}{dt}\left( {{{\bar{r}}}_{s}}\times M{{{\dot{\bar{r}}}}_{s}} \right)+\frac{d}{dt}\bar{L}=M{{\dot{\bar{r}}}_{s}}\times {{\dot{\bar{r}}}_{s}}+{{\bar{r}}_{S}}\times M{{\ddot{\bar{r}}}_{S}}+\frac{d}{dt}\bar{L}

TeX (checked):

{\frac {d}{dt}}{\bar {l}}={\frac {d}{dt}}\left({{\bar {r}}_{s}}\times M{\bar {V}}+\int _{}^{}{{{d}^{3}}x\rho ({\bar {x}}){\bar {x}}}\times \left({\bar {\omega }}\times {\bar {x}}\right)\right)={\frac {d}{dt}}\left({{\bar {r}}_{s}}\times M{{\dot {\bar {r}}}_{s}}\right)+{\frac {d}{dt}}{\bar {L}}=M{{\dot {\bar {r}}}_{s}}\times {{\dot {\bar {r}}}_{s}}+{{\bar {r}}_{S}}\times M{{\ddot {\bar {r}}}_{S}}+{\frac {d}{dt}}{\bar {L}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.42 KB / 461 B) :

ddtl¯=ddt(r¯s×MV¯+d3xρ(x¯)x¯×(ω¯×x¯))=ddt(r¯s×Mr¯˙s)+ddtL¯=Mr¯˙s×r¯˙s+r¯S×Mr¯¨S+ddtL¯
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>l</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo>&#x00D7;</mo><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>x</mi><mi>&#x03C1;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo>&#x00D7;</mo><mi>M</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mi>M</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo>&#x00D7;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo>+</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>&#x00D7;</mo><mi>M</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Mechanik des starren Körpers page

Identifiers

  • d
  • d
  • t
  • l¯
  • d
  • d
  • t
  • r¯s
  • M
  • V¯
  • x
  • ρ
  • x¯
  • x¯
  • ω¯
  • x¯
  • d
  • d
  • t
  • r¯s
  • M
  • r¯˙s
  • d
  • d
  • t
  • L¯
  • M
  • r¯˙s
  • r¯˙s
  • r¯S
  • M
  • r¯¨S
  • d
  • d
  • t
  • L¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results