Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1345.14 on revision:1345

* Page found: Mechanik des starren Körpers (eq math.1345.14)

(force rerendering)

Occurrences on the following pages:

Hash: bde4a8889079b87198b02256b755fd69

TeX (original user input):

\begin{align}
  & \sum\limits_{i=1}^{n}{{{m}_{i}}}=M \\ 
 & \bar{V}\cdot \sum\limits_{i=1}^{n}{{{m}_{i}}}\left( \bar{\omega }\times {{{\bar{x}}}^{(i)}} \right)=\left( \bar{V}\times \bar{\omega } \right)\sum\limits_{i=1}^{n}{{{m}_{i}}}{{{\bar{x}}}^{(i)}}=0,da\sum\limits_{i=1}^{n}{{{m}_{i}}}{{{\bar{x}}}^{(i)}}=0 \\ 
 & {{\left( \bar{\omega }\times {{{\bar{x}}}^{(i)}} \right)}^{2}}={{\omega }^{2}}{{x}^{2}}{{\sin }^{2}}\alpha ={{\omega }^{2}}{{x}^{2}}(1-{{\cos }^{2}}\alpha )={{\omega }^{2}}{{x}^{2}}-{{\left( \bar{\omega }\cdot \bar{x} \right)}^{2}}=\sum\limits_{m=1}^{3}{\sum\limits_{n=1}^{3}{{}}{{\omega }^{m}}\left[ {{x}^{2}}{{\delta }_{mn}}-{{x}_{m}}{{x}_{n}} \right]}{{\omega }^{n}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{i=1}^{n}{{m}_{i}}=M\\&{\bar {V}}\cdot \sum \limits _{i=1}^{n}{{m}_{i}}\left({\bar {\omega }}\times {{\bar {x}}^{(i)}}\right)=\left({\bar {V}}\times {\bar {\omega }}\right)\sum \limits _{i=1}^{n}{{m}_{i}}{{\bar {x}}^{(i)}}=0,da\sum \limits _{i=1}^{n}{{m}_{i}}{{\bar {x}}^{(i)}}=0\\&{{\left({\bar {\omega }}\times {{\bar {x}}^{(i)}}\right)}^{2}}={{\omega }^{2}}{{x}^{2}}{{\sin }^{2}}\alpha ={{\omega }^{2}}{{x}^{2}}(1-{{\cos }^{2}}\alpha )={{\omega }^{2}}{{x}^{2}}-{{\left({\bar {\omega }}\cdot {\bar {x}}\right)}^{2}}=\sum \limits _{m=1}^{3}{\sum \limits _{n=1}^{3}{}{{\omega }^{m}}\left[{{x}^{2}}{{\delta }_{mn}}-{{x}_{m}}{{x}_{n}}\right]}{{\omega }^{n}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.981 KB / 657 B) :

i=1nmi=MV¯i=1nmi(ω¯×x¯(i))=(V¯×ω¯)i=1nmix¯(i)=0,dai=1nmix¯(i)=0(ω¯×x¯(i))2=ω2x2sin2α=ω2x2(1cos2α)=ω2x2(ω¯x¯)2=m=13n=13ωm[x2δmnxmxn]ωn
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mi>M</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo><mi>d</mi><mi>a</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B1;</mi><mo>=</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">(</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B1;</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="ORD"><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>n</mi></mrow></mrow></msub><mo>&#x2212;</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Mechanik des starren Körpers page

Identifiers

  • i
  • n
  • mi
  • M
  • V¯
  • i
  • n
  • mi
  • ω¯
  • x¯
  • i
  • V¯
  • ω¯
  • i
  • n
  • mi
  • x¯
  • i
  • d
  • a
  • i
  • n
  • mi
  • x¯
  • i
  • ω¯
  • x¯
  • i
  • ω
  • x
  • α
  • ω
  • x
  • α
  • ω
  • x
  • ω¯
  • x¯
  • m
  • n
  • ω
  • m
  • x
  • δmn
  • xm
  • xn
  • ω
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results