Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1326.59 on revision:1326

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.59)

(force rerendering)

Occurrences on the following pages:

Hash: 8b631f7d9c62000c6892494e1e0481e6

TeX (original user input):

\frac{1}{2}m\left( {{{\dot{q}}}^{2}}+{{\omega }_{o}}^{2}{{q}^{2}} \right)=E=\frac{1}{2}m\left( \frac{{{p}^{2}}}{{{m}^{2}}}+{{\omega }_{o}}^{2}{{q}^{2}} \right)\Rightarrow \frac{{{p}^{2}}}{2mE}+\frac{{{q}^{2}}}{\left( \frac{2E}{m{{\omega }_{o}}^{2}} \right)}=1

TeX (checked):

{\frac {1}{2}}m\left({{\dot {q}}^{2}}+{{\omega }_{o}}^{2}{{q}^{2}}\right)=E={\frac {1}{2}}m\left({\frac {{p}^{2}}{{m}^{2}}}+{{\omega }_{o}}^{2}{{q}^{2}}\right)\Rightarrow {\frac {{p}^{2}}{2mE}}+{\frac {{q}^{2}}{\left({\frac {2E}{m{{\omega }_{o}}^{2}}}\right)}}=1

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.525 KB / 386 B) :

12m(q˙2+ωo2q2)=E=12m(p2m2+ωo2q2)p22mE+q2(2Emωo2)=1
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>E</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>+</mo><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><mi>E</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>E</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mn>1</mn></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • m
  • q˙
  • ωo
  • q
  • E
  • m
  • p
  • m
  • ωo
  • q
  • p
  • m
  • E
  • q
  • E
  • m
  • ωo

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results