Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1326.28 on revision:1326

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.28)

(force rerendering)

Occurrences on the following pages:

Hash: ff7067b1a410d88b29ce8b5439d49327

TeX (original user input):

\begin{align}
  & L=L(q,\dot{q},t):dL=\frac{\partial L}{\partial q}dq+\frac{\partial L}{\partial \dot{q}}d\dot{q}+\frac{\partial L}{\partial t}dt \\ 
 & H=H(q,p,t):dH=\frac{\partial H}{\partial q}dq+\frac{\partial H}{\partial p}dp+\frac{\partial H}{\partial t}dt \\ 
 & H=\dot{q}p-L\Rightarrow dH=\dot{q}dp+pd\dot{q}-dL=\dot{q}dp+pd\dot{q}-\frac{\partial L}{\partial q}dq-\frac{\partial L}{\partial \dot{q}}d\dot{q}-\frac{\partial L}{\partial t}dt \\ 
\end{align}

TeX (checked):

{\begin{aligned}&L=L(q,{\dot {q}},t):dL={\frac {\partial L}{\partial q}}dq+{\frac {\partial L}{\partial {\dot {q}}}}d{\dot {q}}+{\frac {\partial L}{\partial t}}dt\\&H=H(q,p,t):dH={\frac {\partial H}{\partial q}}dq+{\frac {\partial H}{\partial p}}dp+{\frac {\partial H}{\partial t}}dt\\&H={\dot {q}}p-L\Rightarrow dH={\dot {q}}dp+pd{\dot {q}}-dL={\dot {q}}dp+pd{\dot {q}}-{\frac {\partial L}{\partial q}}dq-{\frac {\partial L}{\partial {\dot {q}}}}d{\dot {q}}-{\frac {\partial L}{\partial t}}dt\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.618 KB / 458 B) :

L=L(q,q˙,t):dL=Lqdq+Lq˙dq˙+LtdtH=H(q,p,t):dH=Hqdq+Hpdp+HtdtH=q˙pLdH=q˙dp+pdq˙dL=q˙dp+pdq˙LqdqLq˙dq˙Ltdt
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>L</mi><mo>=</mo><mi>L</mi><mo stretchy="false">(</mo><mi>q</mi><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mi>:</mi><mi>d</mi><mi>L</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mi>d</mi><mi>q</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>H</mi><mo>=</mo><mi>H</mi><mo stretchy="false">(</mo><mi>q</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mi>:</mi><mi>d</mi><mi>H</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mi>d</mi><mi>q</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow></mfrac></mrow><mi>d</mi><mi>p</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>H</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mi>p</mi><mo>&#x2212;</mo><mi>L</mi><mo>&#x21D2;</mo><mi>d</mi><mi>H</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mi>d</mi><mi>p</mi><mo>+</mo><mi>p</mi><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>d</mi><mi>L</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mi>d</mi><mi>p</mi><mo>+</mo><mi>p</mi><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mi>d</mi><mi>q</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • L
  • L
  • q
  • q˙
  • t
  • d
  • L
  • L
  • q
  • d
  • q
  • L
  • q˙
  • d
  • q˙
  • L
  • t
  • d
  • t
  • H
  • H
  • q
  • p
  • t
  • d
  • H
  • H
  • q
  • d
  • q
  • H
  • p
  • d
  • p
  • H
  • t
  • d
  • t
  • H
  • q˙
  • p
  • L
  • d
  • H
  • q˙
  • d
  • p
  • p
  • d
  • q˙
  • d
  • L
  • q˙
  • d
  • p
  • p
  • d
  • q˙
  • L
  • q
  • d
  • q
  • L
  • q˙
  • d
  • q˙
  • L
  • t
  • d
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results