Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1326.214 on revision:1326
* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.214)
(force rerendering)Occurrences on the following pages:
Hash: 24cde9237732b62411bbab57877fb792
TeX (original user input):
\left\{ g,f \right\}=\left( {{{\bar{f}}}_{x}},{{{\bar{g}}}_{x}} \right)={{\bar{f}}_{x}}^{T}J{{\bar{g}}_{x}}=\sum\limits_{i,k=1}^{f}{\left( \frac{\partial f}{\partial {{x}_{i}}}{{J}_{ik}}\frac{\partial g}{\partial {{x}_{k}}} \right)}=\left( \begin{matrix}
\frac{\partial f}{\partial q} & \frac{\partial f}{\partial p} \\
\end{matrix} \right)\left( \begin{matrix}
0 & 1 \\
-1 & 0 \\
\end{matrix} \right)\left( \begin{matrix}
\frac{\partial g}{\partial q} \\
\frac{\partial g}{\partial q} \\
\end{matrix} \right)=\left( \begin{matrix}
\frac{\partial f}{\partial q} & \frac{\partial f}{\partial p} \\
\end{matrix} \right)\left( \begin{matrix}
\frac{\partial g}{\partial p} \\
-\frac{\partial g}{\partial q} \\
\end{matrix} \right)
TeX (checked):
\left\{g,f\right\}=\left({{\bar {f}}_{x}},{{\bar {g}}_{x}}\right)={{\bar {f}}_{x}}^{T}J{{\bar {g}}_{x}}=\sum \limits _{i,k=1}^{f}{\left({\frac {\partial f}{\partial {{x}_{i}}}}{{J}_{ik}}{\frac {\partial g}{\partial {{x}_{k}}}}\right)}=\left({\begin{matrix}{\frac {\partial f}{\partial q}}&{\frac {\partial f}{\partial p}}\\\end{matrix}}\right)\left({\begin{matrix}0&1\\-1&0\\\end{matrix}}\right)\left({\begin{matrix}{\frac {\partial g}{\partial q}}\\{\frac {\partial g}{\partial q}}\\\end{matrix}}\right)=\left({\begin{matrix}{\frac {\partial f}{\partial q}}&{\frac {\partial f}{\partial p}}\\\end{matrix}}\right)\left({\begin{matrix}{\frac {\partial g}{\partial p}}\\-{\frac {\partial g}{\partial q}}\\\end{matrix}}\right)
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.633 KB / 558 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>g</mi><mo>,</mo><mi>f</mi><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>g</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>q</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>p</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>−</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>g</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>q</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>g</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>q</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>q</mi></mrow></mrow></mfrac></mrow></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>p</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>g</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>p</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>g</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>q</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results