Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1326.206 on revision:1326

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.206)

(force rerendering)

Occurrences on the following pages:

Hash: 2355113bdf7c146ff91c32cf543baab6

TeX (original user input):

\begin{align}
  & {{x}^{i}}(t)=\sum\limits_{k=1}^{2}{{{P}_{ik}}{{x}_{0}}^{k}} \\ 
 & P=\left( \begin{matrix}
   \cos {{\omega }_{0}}(t-{{t}_{0}}) & \frac{1}{{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}})  \\
   -{{\omega }_{0}}\sin {{\omega }_{0}}(t-{{t}_{0}}) & \cos {{\omega }_{0}}(t-{{t}_{0}})  \\
\end{matrix} \right) \\ 
 & \det P={{\cos }^{2}}{{\omega }_{0}}(t-{{t}_{0}})+{{\sin }^{2}}{{\omega }_{0}}(t-{{t}_{0}})=1 \\ 
 & d{{x}^{1}}d{{x}^{2}}=(\det P)d{{x}_{0}}^{1}d{{x}_{0}}^{2}=d{{x}_{0}}^{1}d{{x}_{0}}^{2} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{x}^{i}}(t)=\sum \limits _{k=1}^{2}{{{P}_{ik}}{{x}_{0}}^{k}}\\&P=\left({\begin{matrix}\cos {{\omega }_{0}}(t-{{t}_{0}})&{\frac {1}{{\omega }_{0}}}\sin {{\omega }_{0}}(t-{{t}_{0}})\\-{{\omega }_{0}}\sin {{\omega }_{0}}(t-{{t}_{0}})&\cos {{\omega }_{0}}(t-{{t}_{0}})\\\end{matrix}}\right)\\&\det P={{\cos }^{2}}{{\omega }_{0}}(t-{{t}_{0}})+{{\sin }^{2}}{{\omega }_{0}}(t-{{t}_{0}})=1\\&d{{x}^{1}}d{{x}^{2}}=(\det P)d{{x}_{0}}^{1}d{{x}_{0}}^{2}=d{{x}_{0}}^{1}d{{x}_{0}}^{2}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.259 KB / 597 B) :

xi(t)=k=12Pikx0kP=(cosω0(tt0)1ω0sinω0(tt0)ω0sinω0(tt0)cosω0(tt0))detP=cos2ω0(tt0)+sin2ω0(tt0)=1dx1dx2=(detP)dx01dx02=dx01dx02
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>P</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>sin</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>sin</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd><mtd><mi>cos</mi><mo>&#x2061;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>det</mi><mo>&#x2061;</mo><mi>P</mi><mo>=</mo><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mo stretchy="false">(</mo><mi>det</mi><mo>&#x2061;</mo><mi>P</mi><mo stretchy="false">)</mo><mi>d</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mi>d</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>d</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mi>d</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • x
  • i
  • t
  • k
  • Pik
  • x0
  • k
  • P
  • ω0
  • t
  • t0
  • ω0
  • ω0
  • t
  • t0
  • ω0
  • ω0
  • t
  • t0
  • ω0
  • t
  • t0
  • P
  • ω0
  • t
  • t0
  • ω0
  • t
  • t0
  • d
  • x
  • d
  • x
  • P
  • d
  • x0
  • d
  • x0
  • d
  • x0
  • d
  • x0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results