Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1326.190 on revision:1326
* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.190)
(force rerendering)Occurrences on the following pages:
Hash: 1a3fc5611cb7507544b1ea033d225fd5
TeX (original user input):
\begin{align}
& {{A}^{2}}=\left( \begin{matrix}
0 & 1 \\
-{{\omega }_{0}}^{2} & 0 \\
\end{matrix} \right)\left( \begin{matrix}
0 & 1 \\
-{{\omega }_{0}}^{2} & 0 \\
\end{matrix} \right)=-{{\omega }_{0}}^{2}1 \\
& {{A}^{2n}}={{(-1)}^{2n}}{{\omega }_{0}}^{2n}1 \\
& {{A}^{2n+1}}={{(-1)}^{n}}{{\omega }_{0}}^{2n+1}\frac{1}{{{\omega }_{0}}}A \\
\end{align}
TeX (checked):
{\begin{aligned}&{{A}^{2}}=\left({\begin{matrix}0&1\\-{{\omega }_{0}}^{2}&0\\\end{matrix}}\right)\left({\begin{matrix}0&1\\-{{\omega }_{0}}^{2}&0\\\end{matrix}}\right)=-{{\omega }_{0}}^{2}1\\&{{A}^{2n}}={{(-1)}^{2n}}{{\omega }_{0}}^{2n}1\\&{{A}^{2n+1}}={{(-1)}^{n}}{{\omega }_{0}}^{2n+1}{\frac {1}{{\omega }_{0}}}A\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (2.95 KB / 460 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>−</mo><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>−</mo><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>−</mo><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>A</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mfrac></mrow><mi>A</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results