Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1326.133 on revision:1326

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.133)

(force rerendering)

Occurrences on the following pages:

Hash: a04b24768811607decc73c80527c7570

TeX (original user input):

\begin{align}
  & {{M}_{1}}(\bar{q},\bar{Q},t)=\sum\limits_{j=1}^{f}{{}}{{q}_{j}}{{Q}_{j}} \\ 
 & \Rightarrow {{p}_{j}}=\frac{\partial {{M}_{1}}}{\partial {{q}_{j}}}=-{{Q}_{j}} \\ 
 & {{P}_{j}}=-\frac{\partial {{M}_{1}}}{\partial {{Q}_{j}}}={{q}_{j}} \\ 
 & \left( \bar{q},\bar{p} \right)\to \left( \bar{P},-\bar{Q} \right) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{M}_{1}}({\bar {q}},{\bar {Q}},t)=\sum \limits _{j=1}^{f}{}{{q}_{j}}{{Q}_{j}}\\&\Rightarrow {{p}_{j}}={\frac {\partial {{M}_{1}}}{\partial {{q}_{j}}}}=-{{Q}_{j}}\\&{{P}_{j}}=-{\frac {\partial {{M}_{1}}}{\partial {{Q}_{j}}}}={{q}_{j}}\\&\left({\bar {q}},{\bar {p}}\right)\to \left({\bar {P}},-{\bar {Q}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.075 KB / 532 B) :

M1(q¯,Q¯,t)=j=1fqjQjpj=M1qj=QjPj=M1Qj=qj(q¯,p¯)(P¯,Q¯)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • M1
  • q¯
  • Q¯
  • t
  • j
  • f
  • qj
  • Qj
  • pj
  • M1
  • qj
  • Qj
  • Pj
  • M1
  • Qj
  • qj
  • q¯
  • p¯
  • P¯
  • Q¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results