Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1326.114 on revision:1326

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1326.114)

(force rerendering)

Occurrences on the following pages:

Hash: d71f2c1a9093958edd1ae937b5343408

TeX (original user input):

\begin{align}
  & \delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{p}_{k}}{{{\dot{q}}}_{k}}(t)-H(\bar{Q},\bar{P},t) \right\}=0 \\ 
 & \Leftrightarrow \delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}(\bar{Q},\bar{P},t)+\frac{d}{dt}{{M}_{1}} \right\}=0 \\ 
 & =\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}(\bar{Q},\bar{P},t) \right\}+\delta \left\{ {{M}_{1}}(q({{t}_{2}}),Q({{t}_{2}}),{{t}_{2}})-{{M}_{1}}(q({{t}_{1}}),Q({{t}_{1}}),{{t}_{1}}) \right\} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\delta \int \limits _{{t}_{1}}^{{t}_{2}}{dt}\left\{\sum \limits _{k=1}^{f}{}{{p}_{k}}{{\dot {q}}_{k}}(t)-H({\bar {Q}},{\bar {P}},t)\right\}=0\\&\Leftrightarrow \delta \int \limits _{{t}_{1}}^{{t}_{2}}{dt}\left\{\sum \limits _{k=1}^{f}{}{{P}_{k}}{{\dot {Q}}_{k}}(t)-{\bar {H}}({\bar {Q}},{\bar {P}},t)+{\frac {d}{dt}}{{M}_{1}}\right\}=0\\&=\delta \int \limits _{{t}_{1}}^{{t}_{2}}{dt}\left\{\sum \limits _{k=1}^{f}{}{{P}_{k}}{{\dot {Q}}_{k}}(t)-{\bar {H}}({\bar {Q}},{\bar {P}},t)\right\}+\delta \left\{{{M}_{1}}(q({{t}_{2}}),Q({{t}_{2}}),{{t}_{2}})-{{M}_{1}}(q({{t}_{1}}),Q({{t}_{1}}),{{t}_{1}})\right\}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.009 KB / 629 B) :

δt1t2dt{k=1fpkq˙k(t)H(Q¯,P¯,t)}=0δt1t2dt{k=1fPkQ˙k(t)H¯(Q¯,P¯,t)+ddtM1}=0=δt1t2dt{k=1fPkQ˙k(t)H¯(Q¯,P¯,t)}+δ{M1(q(t2),Q(t2),t2)M1(q(t1),Q(t1),t1)}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03B4;</mi><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mi>H</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D4;</mo><mi>&#x03B4;</mi><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>&#x03B4;</mi><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>+</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><mi>Q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>&#x2212;</mo><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><mi>Q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • δ
  • t1
  • t2
  • t
  • k
  • f
  • pk
  • q˙k
  • t
  • H
  • Q¯
  • P¯
  • t
  • δ
  • t1
  • t2
  • t
  • k
  • f
  • Pk
  • Q˙k
  • t
  • H¯
  • Q¯
  • P¯
  • t
  • d
  • d
  • t
  • M1
  • δ
  • t1
  • t2
  • t
  • k
  • f
  • Pk
  • Q˙k
  • t
  • H¯
  • Q¯
  • P¯
  • t
  • δ
  • M1
  • q
  • t2
  • Q
  • t2
  • t2
  • M1
  • q
  • t1
  • Q
  • t1
  • t1

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results