Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1325.64 on revision:1325

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.64)

(force rerendering)

Occurrences on the following pages:

Hash: cd8e04371dce5fa509fec73115076bbd

TeX (original user input):

\begin{align}
  & {{p}_{k}}=\frac{\partial L(\bar{q},\dot{\bar{q}},t)}{\partial {{{\dot{q}}}_{k}}}=m{{{\dot{q}}}_{\acute{\ }k}}+e{{A}_{k}}(\bar{q},t) \\ 
 & \Rightarrow {{{\dot{q}}}_{k}}=\frac{1}{m}\left( {{p}_{k}}-e{{A}_{k}} \right) \\ 
 & H=\sum\limits_{k=1}^{3}{{{p}_{k}}}{{{\dot{q}}}_{k}}-L=\sum\limits_{k=1}^{3}{{{p}_{k}}}\frac{1}{m}\left( {{p}_{k}}-e{{A}_{k}} \right)-\frac{1}{2m}\sum\limits_{k=1}^{3}{{}}{{\left( {{p}_{k}}-e{{A}_{k}} \right)}^{2}}-\sum\limits_{k=1}^{3}{{}}\frac{e}{m}\left( {{p}_{k}}-e{{A}_{k}} \right){{A}_{k}}+e\Phi  \\ 
 & H\left( \bar{q},\bar{p},t \right)=\frac{1}{2m}{{\left( {{{\bar{p}}}_{{}}}-e\bar{A}{{(\bar{q},t)}_{{}}} \right)}^{2}}+e\Phi (\bar{q},t) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{p}_{k}}={\frac {\partial L({\bar {q}},{\dot {\bar {q}}},t)}{\partial {{\dot {q}}_{k}}}}=m{{\dot {q}}_{{\acute {\ }}k}}+e{{A}_{k}}({\bar {q}},t)\\&\Rightarrow {{\dot {q}}_{k}}={\frac {1}{m}}\left({{p}_{k}}-e{{A}_{k}}\right)\\&H=\sum \limits _{k=1}^{3}{{p}_{k}}{{\dot {q}}_{k}}-L=\sum \limits _{k=1}^{3}{{p}_{k}}{\frac {1}{m}}\left({{p}_{k}}-e{{A}_{k}}\right)-{\frac {1}{2m}}\sum \limits _{k=1}^{3}{}{{\left({{p}_{k}}-e{{A}_{k}}\right)}^{2}}-\sum \limits _{k=1}^{3}{}{\frac {e}{m}}\left({{p}_{k}}-e{{A}_{k}}\right){{A}_{k}}+e\Phi \\&H\left({\bar {q}},{\bar {p}},t\right)={\frac {1}{2m}}{{\left({{\bar {p}}_{}}-e{\bar {A}}{{({\bar {q}},t)}_{}}\right)}^{2}}+e\Phi ({\bar {q}},t)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.903 KB / 714 B) :

pk=L(q¯,q¯˙,t)q˙k=mq˙´k+eAk(q¯,t)q˙k=1m(pkeAk)H=k=13pkq˙kL=k=13pk1m(pkeAk)12mk=13(pkeAk)2k=13em(pkeAk)Ak+eΦH(q¯,p¯,t)=12m(p¯eA¯(q¯,t))2+eΦ(q¯,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mi>m</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>k</mi></mrow></mrow></msub><mo>+</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>H</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><mi>L</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mi>e</mi><mi mathvariant="normal">&#x03A6;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>H</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msub><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><msub><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>e</mi><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • pk
  • L
  • q¯
  • q¯˙
  • t
  • q˙k
  • m
  • q˙
  • ´
  • k
  • e
  • Ak
  • q¯
  • t
  • q˙k
  • m
  • pk
  • e
  • Ak
  • H
  • k
  • pk
  • q˙k
  • L
  • k
  • pk
  • m
  • pk
  • e
  • Ak
  • m
  • k
  • pk
  • e
  • Ak
  • k
  • e
  • m
  • pk
  • e
  • Ak
  • Ak
  • e
  • Φ
  • H
  • q¯
  • p¯
  • t
  • m
  • p¯
  • e
  • A¯
  • q¯
  • t
  • e
  • Φ
  • q¯
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results