Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1325.64 on revision:1325
* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.64)
(force rerendering)Occurrences on the following pages:
Hash: cd8e04371dce5fa509fec73115076bbd
TeX (original user input):
\begin{align}
& {{p}_{k}}=\frac{\partial L(\bar{q},\dot{\bar{q}},t)}{\partial {{{\dot{q}}}_{k}}}=m{{{\dot{q}}}_{\acute{\ }k}}+e{{A}_{k}}(\bar{q},t) \\
& \Rightarrow {{{\dot{q}}}_{k}}=\frac{1}{m}\left( {{p}_{k}}-e{{A}_{k}} \right) \\
& H=\sum\limits_{k=1}^{3}{{{p}_{k}}}{{{\dot{q}}}_{k}}-L=\sum\limits_{k=1}^{3}{{{p}_{k}}}\frac{1}{m}\left( {{p}_{k}}-e{{A}_{k}} \right)-\frac{1}{2m}\sum\limits_{k=1}^{3}{{}}{{\left( {{p}_{k}}-e{{A}_{k}} \right)}^{2}}-\sum\limits_{k=1}^{3}{{}}\frac{e}{m}\left( {{p}_{k}}-e{{A}_{k}} \right){{A}_{k}}+e\Phi \\
& H\left( \bar{q},\bar{p},t \right)=\frac{1}{2m}{{\left( {{{\bar{p}}}_{{}}}-e\bar{A}{{(\bar{q},t)}_{{}}} \right)}^{2}}+e\Phi (\bar{q},t) \\
\end{align}
TeX (checked):
{\begin{aligned}&{{p}_{k}}={\frac {\partial L({\bar {q}},{\dot {\bar {q}}},t)}{\partial {{\dot {q}}_{k}}}}=m{{\dot {q}}_{{\acute {\ }}k}}+e{{A}_{k}}({\bar {q}},t)\\&\Rightarrow {{\dot {q}}_{k}}={\frac {1}{m}}\left({{p}_{k}}-e{{A}_{k}}\right)\\&H=\sum \limits _{k=1}^{3}{{p}_{k}}{{\dot {q}}_{k}}-L=\sum \limits _{k=1}^{3}{{p}_{k}}{\frac {1}{m}}\left({{p}_{k}}-e{{A}_{k}}\right)-{\frac {1}{2m}}\sum \limits _{k=1}^{3}{}{{\left({{p}_{k}}-e{{A}_{k}}\right)}^{2}}-\sum \limits _{k=1}^{3}{}{\frac {e}{m}}\left({{p}_{k}}-e{{A}_{k}}\right){{A}_{k}}+e\Phi \\&H\left({\bar {q}},{\bar {p}},t\right)={\frac {1}{2m}}{{\left({{\bar {p}}_{}}-e{\bar {A}}{{({\bar {q}},t)}_{}}\right)}^{2}}+e\Phi ({\bar {q}},t)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (6.903 KB / 714 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>L</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mi>m</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>k</mi></mrow></mrow></msub><mo>+</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>H</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo><mi>L</mi><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo><mi>e</mi><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mi>e</mi><mi mathvariant="normal">Φ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>H</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></msub><mo>−</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><msub><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>e</mi><mi mathvariant="normal">Φ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results