Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1325.243 on revision:1325

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.243)

(force rerendering)

Occurrences on the following pages:

Hash: 11dd4887973bbab515f56dc2c011c0fc

TeX (original user input):

\begin{align}
  & {{{\dot{y}}}_{k}}=\left\{ {{y}_{k}},H \right\}=\sum\limits_{i,j,l=1}^{f}{\frac{\partial {{y}_{k}}}{\partial {{x}_{i}}}{{J}_{ij}}\frac{\partial \bar{H}}{\partial {{y}_{l}}}\frac{\partial {{y}_{l}}}{\partial {{x}_{j}}}}=\sum\limits_{l=1}^{f}{\frac{\partial \bar{H}}{\partial {{y}_{l}}}\sum\limits_{i,j=1}^{f}{\frac{\partial {{y}_{k}}}{\partial {{x}_{i}}}{{J}_{ij}}\frac{\partial {{y}_{l}}}{\partial {{x}_{j}}}}=}\sum\limits_{l=1}^{f}{\frac{\partial \bar{H}}{\partial {{y}_{l}}}\left\{ {{y}_{k}},{{y}_{l}} \right\}} \\ 
 & {{{\dot{y}}}_{k}}=\sum\limits_{l=1}^{f}{{{J}_{kl}}\frac{\partial \bar{H}}{\partial {{y}_{l}}}\Leftrightarrow {{J}_{kl}}=\left\{ {{y}_{k}},{{y}_{l}} \right\}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{\dot {y}}_{k}}=\left\{{{y}_{k}},H\right\}=\sum \limits _{i,j,l=1}^{f}{{\frac {\partial {{y}_{k}}}{\partial {{x}_{i}}}}{{J}_{ij}}{\frac {\partial {\bar {H}}}{\partial {{y}_{l}}}}{\frac {\partial {{y}_{l}}}{\partial {{x}_{j}}}}}=\sum \limits _{l=1}^{f}{{\frac {\partial {\bar {H}}}{\partial {{y}_{l}}}}\sum \limits _{i,j=1}^{f}{{\frac {\partial {{y}_{k}}}{\partial {{x}_{i}}}}{{J}_{ij}}{\frac {\partial {{y}_{l}}}{\partial {{x}_{j}}}}}=}\sum \limits _{l=1}^{f}{{\frac {\partial {\bar {H}}}{\partial {{y}_{l}}}}\left\{{{y}_{k}},{{y}_{l}}\right\}}\\&{{\dot {y}}_{k}}=\sum \limits _{l=1}^{f}{{{J}_{kl}}{\frac {\partial {\bar {H}}}{\partial {{y}_{l}}}}\Leftrightarrow {{J}_{kl}}=\left\{{{y}_{k}},{{y}_{l}}\right\}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.442 KB / 573 B) :

y˙k={yk,H}=i,j,l=1fykxiJijH¯ylylxj=l=1fH¯yli,j=1fykxiJijylxj=l=1fH¯yl{yk,yl}y˙k=l=1fJklH¯ylJkl={yk,yl}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><mi>H</mi><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow></mrow><mo>=</mo></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x21D4;</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>l</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>,</mo><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • y˙k
  • yk
  • H
  • i
  • j
  • l
  • f
  • yk
  • xi
  • Jij
  • H¯
  • yl
  • yl
  • xj
  • l
  • f
  • H¯
  • yl
  • i
  • j
  • f
  • yk
  • xi
  • Jij
  • yl
  • xj
  • l
  • f
  • H¯
  • yl
  • yk
  • yl
  • y˙k
  • l
  • f
  • Jkl
  • H¯
  • yl
  • Jkl
  • yk
  • yl

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results