Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1325.226 on revision:1325

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.226)

(force rerendering)

Occurrences on the following pages:

Hash: 3f711fa7c94d8abf3b30a71660d3b2b6

TeX (original user input):

\begin{align}
  & \frac{\partial f}{\partial {{x}_{i}}}=\sum\limits_{k}{\frac{\partial f}{\partial {{y}_{k}}}\frac{\partial {{y}_{k}}}{\partial {{x}_{i}}}=}\sum\limits_{k}{{{M}_{ki}}^{-1}\frac{\partial f}{\partial {{y}_{k}}}\Leftrightarrow {{{\bar{f}}}_{x}}={{\left( {{M}^{-1}} \right)}^{T}}{{{\bar{f}}}_{y}}\Leftrightarrow {{{\bar{f}}}_{x}}^{T}={{{\bar{f}}}_{y}}^{T}\left( {{M}^{-1}} \right)} \\ 
 & {{{\bar{f}}}_{x}}^{T}J{{{\bar{g}}}_{x}}={{{\bar{f}}}_{y}}^{T}\left( {{M}^{-1}} \right)J{{\left( {{M}^{-1}} \right)}^{T}}{{{\bar{g}}}_{y}}={{{\bar{f}}}_{y}}^{T}J{{{\bar{g}}}_{y}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {\partial f}{\partial {{x}_{i}}}}=\sum \limits _{k}{{\frac {\partial f}{\partial {{y}_{k}}}}{\frac {\partial {{y}_{k}}}{\partial {{x}_{i}}}}=}\sum \limits _{k}{{{M}_{ki}}^{-1}{\frac {\partial f}{\partial {{y}_{k}}}}\Leftrightarrow {{\bar {f}}_{x}}={{\left({{M}^{-1}}\right)}^{T}}{{\bar {f}}_{y}}\Leftrightarrow {{\bar {f}}_{x}}^{T}={{\bar {f}}_{y}}^{T}\left({{M}^{-1}}\right)}\\&{{\bar {f}}_{x}}^{T}J{{\bar {g}}_{x}}={{\bar {f}}_{y}}^{T}\left({{M}^{-1}}\right)J{{\left({{M}^{-1}}\right)}^{T}}{{\bar {g}}_{y}}={{\bar {f}}_{y}}^{T}J{{\bar {g}}_{y}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.38 KB / 557 B) :

fxi=kfykykxi=kMki1fykf¯x=(M1)Tf¯yf¯xT=f¯yT(M1)f¯xTJg¯x=f¯yT(M1)J(M1)Tg¯y=f¯yTJg¯y
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>i</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x21D4;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>&#x21D4;</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mo>=</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>J</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>=</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • f
  • xi
  • k
  • f
  • yk
  • yk
  • xi
  • k
  • Mki
  • f
  • yk
  • f¯x
  • M
  • T
  • f¯y
  • f¯x
  • T
  • f¯y
  • T
  • M
  • f¯x
  • T
  • J
  • g¯x
  • f¯y
  • T
  • M
  • J
  • M
  • T
  • g¯y
  • f¯y
  • T
  • J
  • g¯y

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results