Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1325.226 on revision:1325
* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.226)
(force rerendering)Occurrences on the following pages:
Hash: 3f711fa7c94d8abf3b30a71660d3b2b6
TeX (original user input):
\begin{align}
& \frac{\partial f}{\partial {{x}_{i}}}=\sum\limits_{k}{\frac{\partial f}{\partial {{y}_{k}}}\frac{\partial {{y}_{k}}}{\partial {{x}_{i}}}=}\sum\limits_{k}{{{M}_{ki}}^{-1}\frac{\partial f}{\partial {{y}_{k}}}\Leftrightarrow {{{\bar{f}}}_{x}}={{\left( {{M}^{-1}} \right)}^{T}}{{{\bar{f}}}_{y}}\Leftrightarrow {{{\bar{f}}}_{x}}^{T}={{{\bar{f}}}_{y}}^{T}\left( {{M}^{-1}} \right)} \\
& {{{\bar{f}}}_{x}}^{T}J{{{\bar{g}}}_{x}}={{{\bar{f}}}_{y}}^{T}\left( {{M}^{-1}} \right)J{{\left( {{M}^{-1}} \right)}^{T}}{{{\bar{g}}}_{y}}={{{\bar{f}}}_{y}}^{T}J{{{\bar{g}}}_{y}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{\frac {\partial f}{\partial {{x}_{i}}}}=\sum \limits _{k}{{\frac {\partial f}{\partial {{y}_{k}}}}{\frac {\partial {{y}_{k}}}{\partial {{x}_{i}}}}=}\sum \limits _{k}{{{M}_{ki}}^{-1}{\frac {\partial f}{\partial {{y}_{k}}}}\Leftrightarrow {{\bar {f}}_{x}}={{\left({{M}^{-1}}\right)}^{T}}{{\bar {f}}_{y}}\Leftrightarrow {{\bar {f}}_{x}}^{T}={{\bar {f}}_{y}}^{T}\left({{M}^{-1}}\right)}\\&{{\bar {f}}_{x}}^{T}J{{\bar {g}}_{x}}={{\bar {f}}_{y}}^{T}\left({{M}^{-1}}\right)J{{\left({{M}^{-1}}\right)}^{T}}{{\bar {g}}_{y}}={{\bar {f}}_{y}}^{T}J{{\bar {g}}_{y}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.38 KB / 557 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo></mrow><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>i</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>f</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>⇔</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>⇔</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mo>=</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>x</mi></mrow></msub><mo>=</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>J</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mn>1</mn></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mo>=</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>g</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>y</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results