Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1325.194 on revision:1325

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.194)

(force rerendering)

Occurrences on the following pages:

Hash: c5371a906d195889d8a33c84d0c1bae6

TeX (original user input):

\begin{align}
  & {{\Phi }_{t,{{t}_{0}}}}({{{\bar{x}}}_{0}})={{{\bar{x}}}_{0}}+\bar{F}({{{\bar{x}}}_{0}},t)(t-{{t}_{0}})+O({{(t-{{t}_{0}})}^{2}}) \\ 
 & \bar{F}({{{\bar{x}}}_{0}},t)=J{{{\bar{H}}}_{,x}}=\left( \begin{matrix}
   \frac{\partial H}{\partial p}  \\
   -\frac{\partial H}{\partial q}  \\
\end{matrix} \right) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{\Phi }_{t,{{t}_{0}}}}({{\bar {x}}_{0}})={{\bar {x}}_{0}}+{\bar {F}}({{\bar {x}}_{0}},t)(t-{{t}_{0}})+O({{(t-{{t}_{0}})}^{2}})\\&{\bar {F}}({{\bar {x}}_{0}},t)=J{{\bar {H}}_{,x}}=\left({\begin{matrix}{\frac {\partial H}{\partial p}}\\-{\frac {\partial H}{\partial q}}\\\end{matrix}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.261 KB / 527 B) :

Φt,t0(x¯0)=x¯0+F¯(x¯0,t)(tt0)+O((tt0)2)F¯(x¯0,t)=JH¯,x=(HpHq)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>t</mi><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>x</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>q</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • Φt,t0
  • x¯0
  • x¯0
  • F¯
  • x¯0
  • t
  • t
  • t0
  • O
  • t
  • t0
  • F¯
  • x¯0
  • t
  • J
  • H¯,x
  • H
  • p
  • H
  • q

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results