Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1325.183 on revision:1325

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.183)

(force rerendering)

Occurrences on the following pages:

Hash: ad38d2c466ba08136aca628442857415

TeX (original user input):

\begin{align}
  & {{{\dot{y}}}_{i}}=\sum\limits_{k}^{{}}{\frac{\partial {{y}_{i}}}{\partial {{x}_{k}}}{{{\dot{x}}}_{k}}}\Leftrightarrow \dot{\bar{y}}={{M}^{-1}}\dot{\bar{x}}=\left( {{J}^{-1}}{{M}^{T}}J \right)J{{{\bar{H}}}_{,x}} \\ 
 & \frac{\partial \bar{H}}{\partial {{y}_{i}}}=\sum\limits_{k}^{{}}{\frac{\partial \bar{H}}{\partial {{x}_{k}}}\frac{\partial {{x}_{k}}}{\partial {{y}_{i}}}\Leftrightarrow {{{\bar{H}}}_{,y}}={{M}^{T}}{{{\bar{H}}}_{,x}}} \\ 
 & \Rightarrow \dot{\bar{y}}=\left( {{J}^{-1}}{{M}^{T}}J \right)J{{\left( {{M}^{T}} \right)}^{-1}}{{{\bar{H}}}_{,y}}=-J\left( -1 \right){{M}^{T}}{{\left( {{M}^{T}} \right)}^{-1}}{{{\bar{H}}}_{,y}}=J{{{\bar{H}}}_{,y}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{\dot {y}}_{i}}=\sum \limits _{k}^{}{{\frac {\partial {{y}_{i}}}{\partial {{x}_{k}}}}{{\dot {x}}_{k}}}\Leftrightarrow {\dot {\bar {y}}}={{M}^{-1}}{\dot {\bar {x}}}=\left({{J}^{-1}}{{M}^{T}}J\right)J{{\bar {H}}_{,x}}\\&{\frac {\partial {\bar {H}}}{\partial {{y}_{i}}}}=\sum \limits _{k}^{}{{\frac {\partial {\bar {H}}}{\partial {{x}_{k}}}}{\frac {\partial {{x}_{k}}}{\partial {{y}_{i}}}}\Leftrightarrow {{\bar {H}}_{,y}}={{M}^{T}}{{\bar {H}}_{,x}}}\\&\Rightarrow {\dot {\bar {y}}}=\left({{J}^{-1}}{{M}^{T}}J\right)J{{\left({{M}^{T}}\right)}^{-1}}{{\bar {H}}_{,y}}=-J\left(-1\right){{M}^{T}}{{\left({{M}^{T}}\right)}^{-1}}{{\bar {H}}_{,y}}=J{{\bar {H}}_{,y}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.404 KB / 621 B) :

y˙i=kyixkx˙ky¯˙=M1x¯˙=(J1MTJ)JH¯,xH¯yi=kH¯xkxkyiH¯,y=MTH¯,xy¯˙=(J1MTJ)J(MT)1H¯,y=J(1)MT(MT)1H¯,y=JH¯,y
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>&#x21D4;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mi>J</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>x</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>y</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x21D4;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>y</mi></mrow></mrow></msub><mo>=</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>x</mi></mrow></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>J</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mi>J</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>J</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>y</mi></mrow></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mi>J</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>M</mi><mrow data-mjx-texclass="ORD"><mi>T</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>y</mi></mrow></mrow></msub><mo>=</mo><mi>J</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>,</mo><mi>y</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • y˙i
  • k
  • yi
  • xk
  • x˙k
  • y¯˙
  • M
  • x¯˙
  • J
  • M
  • T
  • J
  • J
  • H¯,x
  • H¯
  • yi
  • k
  • H¯
  • xk
  • xk
  • yi
  • H¯,y
  • M
  • T
  • H¯,x
  • y¯˙
  • J
  • M
  • T
  • J
  • J
  • M
  • T
  • H¯,y
  • J
  • M
  • T
  • M
  • T
  • H¯,y
  • J
  • H¯,y

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results