Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1325.136 on revision:1325

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.136)

(force rerendering)

Occurrences on the following pages:

Hash: 2a87d2e56a9163a513f7b5c49554a0dc

TeX (original user input):

\begin{align}
  & H=\bar{H}\quad \left( \frac{\partial {{M}_{1}}}{\partial t} \right)=0 \\ 
 & H=\frac{2m\omega P{{\cos }^{2}}Q}{2m}+\frac{m{{\omega }^{2}}2P}{2m\omega }{{\sin }^{2}}Q=\omega P \\ 
\end{align}

TeX (checked):

{\begin{aligned}&H={\bar {H}}\quad \left({\frac {\partial {{M}_{1}}}{\partial t}}\right)=0\\&H={\frac {2m\omega P{{\cos }^{2}}Q}{2m}}+{\frac {m{{\omega }^{2}}2P}{2m\omega }}{{\sin }^{2}}Q=\omega P\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.89 KB / 443 B) :

H=H¯(M1t)=0H=2mωPcos2Q2m+mω22P2mωsin2Q=ωP
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>H</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>H</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><mi>&#x03C9;</mi><mi>P</mi><msup><mi>cos</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>Q</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mn>2</mn><mi>P</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><mi>&#x03C9;</mi></mrow></mrow></mfrac></mrow><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>Q</mi><mo>=</mo><mi>&#x03C9;</mi><mi>P</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • H
  • H¯
  • M1
  • t
  • H
  • m
  • ω
  • P
  • Q
  • m
  • m
  • ω
  • P
  • m
  • ω
  • Q
  • ω
  • P

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results