Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1325.120 on revision:1325

* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.120)

(force rerendering)

Occurrences on the following pages:

Hash: da5d87cbd002d9832bdb153104a216e1

TeX (original user input):

0=\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dtL}=\sum\limits_{k=1}^{f}{{}}\left. \left( {{P}_{k}}+\frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}} \right)\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}+\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\sum\limits_{k=1}^{f}{{}}\left\{ \left( {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}} \right)\delta {{P}_{k}}-\left( {{{\dot{P}}}_{k}}(t)+\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}} \right)\delta {{Q}_{k}} \right\}

TeX (checked):

0=\delta \int \limits _{{t}_{1}}^{{t}_{2}}{dtL}=\sum \limits _{k=1}^{f}{}\left.\left({{P}_{k}}+{\frac {\partial {{M}_{1}}}{\partial {{Q}_{k}}}}\right)\delta {{Q}_{k}}\right|_{{t}_{1}}^{{t}_{2}}+\int \limits _{{t}_{1}}^{{t}_{2}}{dt}\sum \limits _{k=1}^{f}{}\left\{\left({{\dot {Q}}_{k}}(t)-{\frac {\partial {\bar {H}}({\bar {Q}},{\bar {P}},t)}{\partial {{P}_{k}}}}\right)\delta {{P}_{k}}-\left({{\dot {P}}_{k}}(t)+{\frac {\partial {\bar {H}}({\bar {Q}},{\bar {P}},t)}{\partial {{Q}_{k}}}}\right)\delta {{Q}_{k}}\right\}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.694 KB / 544 B) :

0=δt1t2dtL=k=1f(Pk+M1Qk)δQk|t1t2+t1t2dtk=1f{(Q˙k(t)H¯(Q¯,P¯,t)Pk)δPk(P˙k(t)+H¯(Q¯,P¯,t)Qk)δQk}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mn>0</mn><mo>=</mo><mi>&#x03B4;</mi><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi><mi>L</mi></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msubsup><mo>+</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B4;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page

Identifiers

  • δ
  • t1
  • t2
  • t
  • L
  • k
  • f
  • Pk
  • M1
  • Qk
  • δ
  • Qk
  • t1
  • t2
  • t1
  • t2
  • t
  • k
  • f
  • Q˙k
  • t
  • H¯
  • Q¯
  • P¯
  • t
  • Pk
  • δ
  • Pk
  • P˙k
  • t
  • H¯
  • Q¯
  • P¯
  • t
  • Qk
  • δ
  • Qk

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results