Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1325.115 on revision:1325
* Page found: Der Hamiltonsche kanonische Formalismus (eq math.1325.115)
(force rerendering)Occurrences on the following pages:
Hash: c60a34dedd7fd9cceedad3658ba98abc
TeX (original user input):
\delta \int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{{}}{{P}_{k}}{{{\dot{Q}}}_{k}}(t)-\bar{H}(\bar{Q},\bar{P},t) \right\}=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{dt}\left\{ \sum\limits_{k=1}^{f}{\delta }{{P}_{k}}{{{\dot{Q}}}_{k}}(t)+{{P}_{k}}\delta {{{\dot{Q}}}_{k}}(t)-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{Q}_{k}}}\delta {{Q}_{k}}-\frac{\partial \bar{H}(\bar{Q},\bar{P},t)}{\partial {{P}_{k}}}\delta {{P}_{k}} \right\}
TeX (checked):
\delta \int \limits _{{t}_{1}}^{{t}_{2}}{dt}\left\{\sum \limits _{k=1}^{f}{}{{P}_{k}}{{\dot {Q}}_{k}}(t)-{\bar {H}}({\bar {Q}},{\bar {P}},t)\right\}=\int \limits _{{t}_{1}}^{{t}_{2}}{dt}\left\{\sum \limits _{k=1}^{f}{\delta }{{P}_{k}}{{\dot {Q}}_{k}}(t)+{{P}_{k}}\delta {{\dot {Q}}_{k}}(t)-{\frac {\partial {\bar {H}}({\bar {Q}},{\bar {P}},t)}{\partial {{Q}_{k}}}}\delta {{Q}_{k}}-{\frac {\partial {\bar {H}}({\bar {Q}},{\bar {P}},t)}{\partial {{P}_{k}}}}\delta {{P}_{k}}\right\}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.466 KB / 499 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>δ</mi><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mi>δ</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi>δ</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>δ</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>δ</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Hamiltonsche kanonische Formalismus page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results