Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1321.96 on revision:1321

* Page found: Das Hamiltonsche Prinzip (eq math.1321.96)

(force rerendering)

Occurrences on the following pages:

Hash: a248fb9d1a002095305d838df1b852bf

TeX (original user input):

\begin{align}
  & \frac{d}{dt}\frac{\partial \tilde{L}}{\partial {{{\dot{Q}}}_{k}}}-\frac{\partial \tilde{L}}{\partial {{Q}_{k}}}=\sum\limits_{l=1}^{f}{\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}+\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\left( \frac{\partial {{{\dot{q}}}_{l}}}{\partial {{Q}_{k}}} \right)-\left( \frac{\partial L}{\partial {{q}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}+\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\left( \frac{\partial {{{\dot{q}}}_{l}}}{\partial {{Q}_{k}}} \right) \right) \right\}} \\
 & =\sum\limits_{l=1}^{f}{\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}-\left( \frac{\partial L}{\partial {{q}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}} \right) \right\}}=\sum\limits_{l=1}^{f}{\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}}\left\{ \left[ \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}} \right) \right]-\left( \frac{\partial L}{\partial {{q}_{l}}} \right) \right\}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {d}{dt}}{\frac {\partial {\tilde {L}}}{\partial {{\dot {Q}}_{k}}}}-{\frac {\partial {\tilde {L}}}{\partial {{Q}_{k}}}}=\sum \limits _{l=1}^{f}{\left\{\left[{\frac {d}{dt}}\left({\frac {\partial L}{\partial {{\dot {q}}_{l}}}}\right)\right]{\frac {\partial {{q}_{l}}}{\partial {{Q}_{k}}}}+{\frac {\partial L}{\partial {{\dot {q}}_{l}}}}\left({\frac {\partial {{\dot {q}}_{l}}}{\partial {{Q}_{k}}}}\right)-\left({\frac {\partial L}{\partial {{q}_{l}}}}{\frac {\partial {{q}_{l}}}{\partial {{Q}_{k}}}}+{\frac {\partial L}{\partial {{\dot {q}}_{l}}}}\left({\frac {\partial {{\dot {q}}_{l}}}{\partial {{Q}_{k}}}}\right)\right)\right\}}\\&=\sum \limits _{l=1}^{f}{\left\{\left[{\frac {d}{dt}}\left({\frac {\partial L}{\partial {{\dot {q}}_{l}}}}\right)\right]{\frac {\partial {{q}_{l}}}{\partial {{Q}_{k}}}}-\left({\frac {\partial L}{\partial {{q}_{l}}}}{\frac {\partial {{q}_{l}}}{\partial {{Q}_{k}}}}\right)\right\}}=\sum \limits _{l=1}^{f}{{\frac {\partial {{q}_{l}}}{\partial {{Q}_{k}}}}\left\{\left[{\frac {d}{dt}}\left({\frac {\partial L}{\partial {{\dot {q}}_{l}}}}\right)\right]-\left({\frac {\partial L}{\partial {{q}_{l}}}}\right)\right\}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (10.133 KB / 602 B) :

ddtL~Q˙kL~Qk=l=1f{[ddt(Lq˙l)]qlQk+Lq˙l(q˙lQk)(LqlqlQk+Lq˙l(q˙lQk))}=l=1f{[ddt(Lq˙l)]qlQk(LqlqlQk)}=l=1fqlQk{[ddt(Lq˙l)](Lql)}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>~</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>~</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>L</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Hamiltonsche Prinzip page

Identifiers

  • d
  • d
  • t
  • L~
  • Q˙k
  • L~
  • Qk
  • l
  • f
  • d
  • d
  • t
  • L
  • q˙l
  • ql
  • Qk
  • L
  • q˙l
  • q˙l
  • Qk
  • L
  • ql
  • ql
  • Qk
  • L
  • q˙l
  • q˙l
  • Qk
  • l
  • f
  • d
  • d
  • t
  • L
  • q˙l
  • ql
  • Qk
  • L
  • ql
  • ql
  • Qk
  • l
  • f
  • ql
  • Qk
  • d
  • d
  • t
  • L
  • q˙l
  • L
  • ql

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results