Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1257.63 on revision:1257
* Page found: Das d'Alembertsche Prinzip (eq math.1257.63)
(force rerendering)Occurrences on the following pages:
Hash: f7b1e68037752bc27d7bd2e872d00161
TeX (original user input):
\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}}{{\delta }_{{}}}{{({{\vec{r}}_{i}}-{{\vec{r}}_{j}})}_{{}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}}{{\delta }_{{}}}{{r}_{ij}}=0
TeX (checked):
\sum \limits _{i}{{{\vec {Z}}_{i}}{{\delta }_{}}{{\vec {r}}_{i}}}=\sum \limits _{i,j}{{{\lambda }_{ij}}{\frac {{{\vec {r}}_{i}}-{{\vec {r}}_{j}}}{{r}_{ij}}}{{\delta }_{}}{{\vec {r}}_{i}}}={\frac {1}{2}}\sum \limits _{i,j}{{{\lambda }_{ij}}{\frac {{{\vec {r}}_{i}}-{{\vec {r}}_{j}}}{{r}_{ij}}}}{{\delta }_{}}{{({{\vec {r}}_{i}}-{{\vec {r}}_{j}})}_{}}={\frac {1}{2}}\sum \limits _{i,j}{{\lambda }_{ij}}{{\delta }_{}}{{r}_{ij}}=0
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (4.179 KB / 423 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Z</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub></mrow></mfrac></mrow><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub></mrow></mfrac></mrow></mrow><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>,</mo><mi>j</mi></mrow></mrow></munder><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"></mrow></msub><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mo>=</mo><mn>0</mn></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results