Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1257.123 on revision:1257

* Page found: Das d'Alembertsche Prinzip (eq math.1257.123)

(force rerendering)

Occurrences on the following pages:

Hash: 1238be728c0d565f9f6b5b36d63d304b

TeX (original user input):

\begin{align}
  & \sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\delta {{{\bar{r}}}_{i}}}=\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\delta {{{\bar{r}}}_{i}}=\sum\limits_{j}{{{Q}_{j}}}}\delta {{q}_{j}} \\
 & \Rightarrow \sum\limits_{j}{\left\{ \frac{d}{dt}\left( \frac{\partial }{\partial {{{\dot{q}}}_{j}}}T \right){{-}_{{}}}\left( \frac{\partial }{\partial {{q}_{j}}}T \right)-{{Q}_{j}} \right\}\delta {{q}_{j}}=0} \\
\end{align}

TeX (checked):

{\begin{aligned}&\sum \limits _{i}{{{m}_{i}}{{\ddot {\bar {r}}}_{i}}\delta {{\bar {r}}_{i}}}=\sum \limits _{i}^{}{{{\vec {X}}_{i}}\delta {{\bar {r}}_{i}}=\sum \limits _{j}{{Q}_{j}}}\delta {{q}_{j}}\\&\Rightarrow \sum \limits _{j}{\left\{{\frac {d}{dt}}\left({\frac {\partial }{\partial {{\dot {q}}_{j}}}}T\right){{-}_{}}\left({\frac {\partial }{\partial {{q}_{j}}}}T\right)-{{Q}_{j}}\right\}\delta {{q}_{j}}=0}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.515 KB / 566 B) :

imir¯¨iδr¯i=iXiδr¯i=jQjδqjj{ddt(q˙jT)(qjT)Qj}δqj=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo></mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></munder><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow><mi>&#x03B4;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi>&#x03B4;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • i
  • mi
  • r¯¨i
  • δ
  • r¯i
  • i
  • Xi
  • δ
  • r¯i
  • j
  • Qj
  • δ
  • qj
  • j
  • d
  • d
  • t
  • q˙j
  • T
  • qj
  • T
  • Qj
  • δ
  • qj

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results