Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1257.123 on revision:1257
* Page found: Das d'Alembertsche Prinzip (eq math.1257.123)
(force rerendering)Occurrences on the following pages:
Hash: 1238be728c0d565f9f6b5b36d63d304b
TeX (original user input):
\begin{align}
& \sum\limits_{i}{{{m}_{i}}{{{\ddot{\bar{r}}}}_{i}}\delta {{{\bar{r}}}_{i}}}=\sum\limits_{i}^{{}}{{{{\vec{X}}}_{i}}\delta {{{\bar{r}}}_{i}}=\sum\limits_{j}{{{Q}_{j}}}}\delta {{q}_{j}} \\
& \Rightarrow \sum\limits_{j}{\left\{ \frac{d}{dt}\left( \frac{\partial }{\partial {{{\dot{q}}}_{j}}}T \right){{-}_{{}}}\left( \frac{\partial }{\partial {{q}_{j}}}T \right)-{{Q}_{j}} \right\}\delta {{q}_{j}}=0} \\
\end{align}
TeX (checked):
{\begin{aligned}&\sum \limits _{i}{{{m}_{i}}{{\ddot {\bar {r}}}_{i}}\delta {{\bar {r}}_{i}}}=\sum \limits _{i}^{}{{{\vec {X}}_{i}}\delta {{\bar {r}}_{i}}=\sum \limits _{j}{{Q}_{j}}}\delta {{q}_{j}}\\&\Rightarrow \sum \limits _{j}{\left\{{\frac {d}{dt}}\left({\frac {\partial }{\partial {{\dot {q}}_{j}}}}T\right){{-}_{}}\left({\frac {\partial }{\partial {{q}_{j}}}}T\right)-{{Q}_{j}}\right\}\delta {{q}_{j}}=0}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.515 KB / 566 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>¨</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>δ</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>X</mi><mo>→</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi>δ</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></munder><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow><mi>δ</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mo>−</mo><mrow data-mjx-texclass="ORD"></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>T</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo data-mjx-texclass="CLOSE">}</mo></mrow><mi>δ</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results