Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1256.186 on revision:1256

* Page found: Das d'Alembertsche Prinzip (eq math.1256.186)

(force rerendering)

Occurrences on the following pages:

Hash: 041dfcf6efa43f0f6d6ee57b3fbeea67

TeX (original user input):

\begin{align}
  & {{T}_{lk}}=\left( \begin{matrix}
   m & 0  \\
   0 & m  \\
\end{matrix} \right) \\
 & {{V}_{lk}}=\left( \begin{matrix}
   m\frac{g}{l}+k & -k  \\
   -k & m\frac{g}{l}+k  \\
\end{matrix} \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&{{T}_{lk}}=\left({\begin{matrix}m&0\\0&m\\\end{matrix}}\right)\\&{{V}_{lk}}=\left({\begin{matrix}m{\frac {g}{l}}+k&-k\\-k&m{\frac {g}{l}}+k\\\end{matrix}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.727 KB / 384 B) :

Tlk=(m00m)Vlk=(mgl+kkkmgl+k)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>m</mi></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mi>m</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>k</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>m</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>+</mo><mi>k</mi></mtd><mtd><mo>&#x2212;</mo><mi>k</mi></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>k</mi></mtd><mtd><mi>m</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo>+</mo><mi>k</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • Tlk
  • m
  • m
  • Vlk
  • m
  • g
  • l
  • k
  • k
  • k
  • m
  • g
  • l
  • k

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results