Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1256.183 on revision:1256

* Page found: Das d'Alembertsche Prinzip (eq math.1256.183)

(force rerendering)

Occurrences on the following pages:

Hash: 030a10262a3044609fd3c046ff04a485

TeX (original user input):

\begin{align}
  & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
 & V=mg{{z}_{1}}+mg{{z}_{2}}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos \frac{{{q}_{1}}}{l})+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos \frac{{{q}_{2}}}{l}) \\
 & V\approx \frac{1}{2}mgl{{\phi }_{1}}^{2}+\frac{1}{2}mgl{{\phi }_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}} \\
\end{align}

TeX (checked):

{\begin{aligned}&T={\frac {1}{2}}m({{\dot {q}}_{1}}^{2}+{{\dot {q}}_{2}}^{2})\\&V=mg{{z}_{1}}+mg{{z}_{2}}+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos {\frac {{q}_{1}}{l}})+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos {\frac {{q}_{2}}{l}})\\&V\approx {\frac {1}{2}}mgl{{\phi }_{1}}^{2}+{\frac {1}{2}}mgl{{\phi }_{2}}^{2}+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}={\frac {1}{2}}{\frac {g}{l}}m{{q}_{1}}^{2}+{\frac {1}{2}}{\frac {g}{l}}m{{q}_{2}}^{2}+{\frac {1}{2}}k{{({{q}_{1}}-{{q}_{2}})}^{2}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.457 KB / 542 B) :

T=12m(q˙12+q˙22)V=mgz1+mgz2+12k(q1q2)2=mgl(1cosq1l)+12k(q1q2)2+mgl(1cosq2l)V12mglϕ12+12mglϕ22+12k(q1q2)2=12glmq12+12glmq22+12k(q1q2)2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>T</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mo stretchy="false">(</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>V</mi><mo>=</mo><mi>m</mi><mi>g</mi><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><mi>m</mi><mi>g</mi><msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>m</mi><mi>g</mi><mi>l</mi><mo stretchy="false">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>m</mi><mi>g</mi><mi>l</mi><mo stretchy="false">(</mo><mn>1</mn><mo>&#x2212;</mo><mi>cos</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>V</mi><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mi>g</mi><mi>l</mi><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mi>g</mi><mi>l</mi><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mi>m</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></mfrac></mrow><mi>m</mi><msup><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>k</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • T
  • m
  • q˙1
  • q˙2
  • V
  • m
  • g
  • z1
  • m
  • g
  • z2
  • k
  • q1
  • q2
  • m
  • g
  • l
  • q1
  • l
  • k
  • q1
  • q2
  • m
  • g
  • l
  • q2
  • l
  • V
  • m
  • g
  • l
  • ϕ1
  • m
  • g
  • l
  • ϕ2
  • k
  • q1
  • q2
  • g
  • l
  • m
  • q1
  • g
  • l
  • m
  • q2
  • k
  • q1
  • q2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results