Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1256.177 on revision:1256
* Page found: Das d'Alembertsche Prinzip (eq math.1256.177)
(force rerendering)Occurrences on the following pages:
Hash: b4daeb4696a2dbe9161aa0bae79c10e7
TeX (original user input):
\begin{align}
& L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
& L=\frac{1}{2}\left( \sum\limits_{a,b}{\left( \sum\limits_{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}{{{\dot{Q}}}_{a}}{{{\dot{Q}}}_{b}}-\sum\limits_{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}{{Q}_{a}}{{Q}_{b}}}} \right)} \right) \\
& \sum\limits_{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}={{\delta }_{ab}}} \\
& \sum\limits_{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}={{\omega }_{a}}^{2}{{\delta }_{ab}}} \\
& L=\frac{1}{2}\left( \sum\limits_{a}{\left( {{{\dot{Q}}}_{a}}^{2}-{{\omega }_{a}}^{2}{{Q}_{a}}^{2} \right)} \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&L=T-V={\frac {1}{2}}\left(\sum \limits _{j,k}{{T}_{jk}}{{\dot {q}}_{j}}{{\dot {q}}_{k}}-\sum \limits _{j,k}{{V}_{jk}}{{q}_{j}}{{q}_{k}}\right)\\&L={\frac {1}{2}}\left(\sum \limits _{a,b}{\left(\sum \limits _{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}{{\dot {Q}}_{a}}{{\dot {Q}}_{b}}-\sum \limits _{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}{{Q}_{a}}{{Q}_{b}}}}\right)}\right)\\&\sum \limits _{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}={{\delta }_{ab}}}\\&\sum \limits _{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}={{\omega }_{a}}^{2}{{\delta }_{ab}}}\\&L={\frac {1}{2}}\left(\sum \limits _{a}{\left({{\dot {Q}}_{a}}^{2}-{{\omega }_{a}}^{2}{{Q}_{a}}^{2}\right)}\right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (6.6 KB / 616 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>L</mi><mo>=</mo><mi>T</mi><mo>−</mo><mi>V</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>−</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>L</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>,</mo><mi>b</mi></mrow></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msub><mo>−</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msub></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>T</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo>=</mo><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mi>b</mi></mrow></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msup><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msup><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msup><mo>=</mo><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mi>b</mi></mrow></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>L</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>−</mo><msup><msub><mi>ω</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results