Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1256.142 on revision:1256

* Page found: Das d'Alembertsche Prinzip (eq math.1256.142)

(force rerendering)

Occurrences on the following pages:

Hash: 2cdd713ac53cbc5cdab1dea7288426fa

TeX (original user input):

\begin{align}
  & V(0,....,0)=0 \\
 & \sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}}=0\quad \left( \frac{\partial V}{\partial {{q}_{j}}} \right)=-{{Q}_{j}}=0 \\
 & \frac{1}{2}\sum\limits_{j,k}{{{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{j}}\partial {{q}_{k}}} \right)}_{0}}{{q}_{j}}{{q}_{k}}}=\frac{1}{2}\sum\limits_{j,k}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}} \\
\end{align}

TeX (checked):

{\begin{aligned}&V(0,....,0)=0\\&\sum \limits _{j}{{{\left({\frac {\partial V}{\partial {{q}_{j}}}}\right)}_{0}}{{q}_{j}}}=0\quad \left({\frac {\partial V}{\partial {{q}_{j}}}}\right)=-{{Q}_{j}}=0\\&{\frac {1}{2}}\sum \limits _{j,k}{{{\left({\frac {{{\partial }^{2}}V}{\partial {{q}_{j}}\partial {{q}_{k}}}}\right)}_{0}}{{q}_{j}}{{q}_{k}}}={\frac {1}{2}}\sum \limits _{j,k}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.626 KB / 528 B) :

V(0,....,0)=0j(Vqj)0qj=0(Vqj)=Qj=012j,k(2Vqjqk)0qjqk=12j,kVjkqjqk
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>V</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mo>,</mo><mi>k</mi></mrow></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi></mrow></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • V
  • j
  • V
  • qj
  • qj
  • V
  • qj
  • Qj
  • j
  • k
  • V
  • qj
  • qk
  • qj
  • qk
  • j
  • k
  • Vjk
  • qj
  • qk

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results