Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1256.134 on revision:1256

* Page found: Das d'Alembertsche Prinzip (eq math.1256.134)

(force rerendering)

Occurrences on the following pages:

Hash: c93d9e402f764b08bc24c3469dbe1e9e

TeX (original user input):

\begin{align}
  & T=\frac{1}{2}m({{{\dot{x}}}^{2}}+{{{\dot{y}}}^{2}}) \\
 & x=({{R}_{o}}-ct)\cos \phi  \\
 & \dot{x}=-c\cos \phi -({{R}_{o}}-ct)\dot{\phi }\sin \phi =-c\cos q-({{R}_{o}}-ct)\dot{q}\sin q \\
 & y=({{R}_{o}}-ct)\sin \phi  \\
\end{align}

TeX (checked):

{\begin{aligned}&T={\frac {1}{2}}m({{\dot {x}}^{2}}+{{\dot {y}}^{2}})\\&x=({{R}_{o}}-ct)\cos \phi \\&{\dot {x}}=-c\cos \phi -({{R}_{o}}-ct){\dot {\phi }}\sin \phi =-c\cos q-({{R}_{o}}-ct){\dot {q}}\sin q\\&y=({{R}_{o}}-ct)\sin \phi \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.468 KB / 444 B) :

T=12m(x˙2+y˙2)x=(Roct)cosϕx˙=ccosϕ(Roct)ϕ˙sinϕ=ccosq(Roct)q˙sinqy=(Roct)sinϕ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>T</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mi>m</mi><mo stretchy="false">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>y</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>x</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>&#x2212;</mo><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>˙</mo></mover></mrow></mrow><mo>=</mo><mo>&#x2212;</mo><mi>c</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mo>&#x2212;</mo><mo stretchy="false">(</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>&#x2212;</mo><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi><mo>=</mo><mo>&#x2212;</mo><mi>c</mi><mi>cos</mi><mo>&#x2061;</mo><mi>q</mi><mo>&#x2212;</mo><mo stretchy="false">(</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>&#x2212;</mo><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mi>sin</mi><mo>&#x2061;</mo><mi>q</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>y</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mi>o</mi></mrow></msub><mo>&#x2212;</mo><mi>c</mi><mi>t</mi><mo stretchy="false">)</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das d'Alembertsche Prinzip page

Identifiers

  • T
  • m
  • x˙
  • y˙
  • x
  • Ro
  • c
  • t
  • ϕ
  • x˙
  • c
  • ϕ
  • Ro
  • c
  • t
  • ϕ˙
  • ϕ
  • c
  • q
  • Ro
  • c
  • t
  • q˙
  • q
  • y
  • Ro
  • c
  • t
  • ϕ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results